Skip to main content

Advertisement

Log in

Improved Preservation of the Tissue Surrounding Percutaneous Devices by Hyaluronic Acid and Dermatan Sulfate in a Human Skin Explant Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cellular apoptosis and proliferation was analyzed in an in vitro culture system of organotypic human skin explants in the presence or absence of external fixator pins. The effect on the tissues of a mixture of hyaluronic acid and dermatan sulfate (HA + DS) delivered at the skin–pin interface was also studied. After 2 weeks in culture, skin specimens interfaced with fixator pins showed increased keratinocyte apoptosis and proliferation compared to specimens without fixator pins. Simultaneously, a relative reduction of apoptosis and proliferation was observed in specimens treated with the HA + DS mixture, regardless of fixation pin presence. In addition, the HA + DS mixture appeared to help in the preservation of the epidermal basal membrane. It is concluded that in this in vitro model, fixator pins induce keratinocyte apoptosis and hyperproliferation, which are reduced in the presence of the HA + DS mixture. These methods may be useful for a better maintenance of the soft tissue surrounding percutaneous devices in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ågren, U. M., M. Tammi, M. Ryynänen, and R. Tammi. Developmentally programmed expression of hyaluronan in human skin and its appendages. J. Invest. Dermatol. 109:219–224, 1997.

    Article  PubMed  Google Scholar 

  2. Amagai, M., P. J. Koch, T. Nishikawa, and J. R. Stanley. Pemphigus vulgaris antigen (desmoglein 3) is localized in the lower epidermis, the site of blister formation in patients. J. Invest. Dermatol. 106:351–353, 1996.

    Article  PubMed  CAS  Google Scholar 

  3. Balaz, E. A., and T. C. Laurent. New applications for hyaluronan. In: The Chemistry, Biology and Medical Applications of Hyaluronan and Its Derivatives, edited by T. C. Laurent. Wenner-Gren Symposium, 1998, (72), p. S.325.

  4. Bedoni, M., C. Sforza, C. Dolci, and E. Donetti. Proliferation and differentiation biomarkers in normal human breast skin organotypic cultures. J. Dermatol. Sci. 46:139–142, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. Blanton, R. A., M. D. Coltrera, A. M. Gown, C. L. Halbert, and J. K. McDougall. Expression of the HPV16 E7 gene generates proliferation in stratified squamous cell cultures which is independent of endogenous p53 levels. Cell Growth Diff. 3:791–802, 1992.

    PubMed  CAS  Google Scholar 

  6. Breitkreutz, D., H. J. Stark, N. Mirancea, P. Tomakidi, H. Steinbauer, and N. E. Fusenig. Integrin and basement membrane normalization in mouse grafts of human keratinocytes—implications for epidermal homeostasis. Differentiation 61:195–209, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Buntrock, P., K. D. Jentzsch, and G. Heder. Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity. I. Quantitative and biochemical studies into formation of granulation tissue. Exp. Pathol. 21:46–53, 1982.

    PubMed  CAS  Google Scholar 

  8. Campbell, A. A., L. Song, X. S. Li, B. J. Nelson, C. Bottoni, D. E. Brooks, and E. S. DeJong. Development, characterization, and anti-microbial efficacy of hydroxyapatite-chlorhexidine coatings produced by surface-induced mineralization. J. Biomed. Mater. Res. 53:400–407, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Campo, G. M., A. Avenoso, S. Campo, A. D’Ascola, P. Traina, D. Samà, and A. Calatroni. NF-kB and caspases are involved in the hyaluronan and chondroitin-4-sulphate-exerted antioxidant effect in fibroblast cultures exposed to oxidative stress. J. Appl. Toxicol. 28:509–517, 2008.

    Article  PubMed  CAS  Google Scholar 

  10. Carruthers, J., and A. Carruthers. Hyaluronic acid gel in skin rejuvenation. J. Drugs Dermatol. 5:959–964, 2006.

    PubMed  Google Scholar 

  11. Dechert, T. A., A. E. Ducale, S. I. Ward, and D. R. Yager. Hyaluronan in human acute and chronic dermal wounds. Wound Repair Regen. 14:252–258, 2006.

    Article  PubMed  Google Scholar 

  12. Dunphy, J. E., and K. N. Udupa. Chemical and histochemical sequences in the normal healing of wounds. N. Engl. J. Med. 253:847–851, 1955.

    Article  PubMed  CAS  Google Scholar 

  13. El Ghalbzouri, A., M. F. Jonkman, R. Dijkman, and M. Ponec. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. J. Invest. Dermatol. 124:79–86, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Elkayam, O., I. Yaron, I. Shirazi, M. Yaron, and D. Caspi. Serum levels of hyaluronic acid in patients with psoriatic arthritis. Clin. Rheumatol. 19:455–457, 2000.

    Article  PubMed  CAS  Google Scholar 

  15. Engstrom-Laurent, A., N. Feltelius, R. Hallgren, and A. Wasteson. Raised serum hyaluronate levels in scleroderma: an effect of growth factor induced activation of connective tissue cells? Ann. Rheum. Dis. 44:614–620, 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Freitas, J. P., P. Filipe, I. Emerit, P. Meunier, C. F. Manso, and F. Guerra Rodrigo. Hyaluronic acid in progressive systemic sclerosis. Dermatology 192:46–49, 1996.

    Article  PubMed  CAS  Google Scholar 

  17. Gallo, R. L., and M. Bernfield. Proteoglycans and their role in wound repair. In: The Molecular and Cellular Biology of Wound Repair, 2nd edn., Chap. 15, edited by R. F. Clark. New York: Plenum Press, 1996.

  18. Gawronska-Kozak, B., M. Bogacki, J. S. Rim, W. T. Monroe, and J. A. Manuel. Scarless skin repair in immunodeficient mice. Wound Repair Regen. 14:265–276, 2006.

    Article  PubMed  Google Scholar 

  19. Gupta, D., C. H. Tator, and M. S. Shoichet. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27:2370–2379, 2006.

    Article  PubMed  CAS  Google Scholar 

  20. Hebda, P. A., C. K. Klingbeil, J. A. Abraham, and J. C. Fiddes. Basic fibroblast growth factor stimulation of epidermal wound healing in pigs. J. Invest. Dermatol. 95:626–631, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Jia, C., C. He, G. W. Cherry, B. Carbow, W. Meyer-Ingold, D. Bader, and D. C. West. Hyaluronan, heterogeneity, and healing: the effects of ultrapure hyaluronan of defined molecular size on the repair of full-thickness pig skin wounds. Wound Repair Regen. 3:299–310, 1995.

    Article  PubMed  Google Scholar 

  22. Kawashima, H., K. Atarashi, M. Hirose, J. Hirose, S. Yamada, K. Sugahara, and M. Miyasaka. Oversulfated chondroitin/dermatan sulfates containing GlcAβ1/IdoAα1-3GalNAc(4,6-O-disulfate) interact with L- and P-selectin and chemokines. J. Biol. Chem. 277:12921–12930, 2002.

    Article  PubMed  CAS  Google Scholar 

  23. Knowles, N. G., Y. Miyashita, M. L. Usui, A. J. Marshall, A. Pirrone, K. D. Hauch, B. D. Ratner, R. A. Underwood, P. Fleckman, and J. E. Olerud. A model for studying epithelial attachment and morphology at the interface between skin and percutaneous devices. J. Biomed. Mater. Res. A 74:482–488, 2005.

    PubMed  Google Scholar 

  24. Koshiishi, I., E. Horikoshi, and T. Imanari. Quantification of hyaluronan and chondroitin/dermatan sulfates in the tissue sections on glass slides. Anal. Biochem. 267:222–226, 1999.

    Article  PubMed  CAS  Google Scholar 

  25. Kubo, M., H. Ihn, A. Matsukawa, K. Kikuchi, and K. Tamaki. Dermatomyositis with elevated serum hyaluronate. Clin. Exp. Dermatol. 24:275–278, 1999.

    Article  PubMed  CAS  Google Scholar 

  26. Longaker, M. T., E. S. Chiu, N. S. Adzick, M. Stern, M. R. Harrison, and R. Stern. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann. Surg. 213:292–296, 1991.

    Article  PubMed  CAS  Google Scholar 

  27. Lundgren, D., and R. Axelsson. Soft-tissue-anchored percutaneous device for long-term intracorporeal access. J. Invest. Surg. 2:17–27, 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Lundin, A., A. Engstrom-Laurent, R. Hallgren, and G. Michaelsson. Circulating hyaluronate in psoriasis. Br. J. Dermatol. 112:663–671, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Lundin, A., A. Engstrom-Laurent, G. Michaelsson, and A. Tengblad. High levels of hyaluronate in suction blister fluid from active psoriatic lesions. Br. J. Dermatol. 116:335–340, 1987.

    Article  PubMed  CAS  Google Scholar 

  30. Maas-Szabowski, N., H. J. Stark, and N. E. Fusenig. Keratinocyte growth regulation in defined organotypic cultures through IL-1-induced keratinocyte growth factor expression in resting fibroblasts. J. Invest. Dermatol. 114:1075–1084, 2000.

    Article  PubMed  CAS  Google Scholar 

  31. Mahan, J., D. Seligson, S. L. Henry, P. Hynes, and J. Dobbins. Factors in pin tract infections. Orthopedics 14:305–308, 1991.

    PubMed  CAS  Google Scholar 

  32. Martikainen, A. L., M. Tammi, and R. Tammi. Proteoglycans synthesized by adult human epidermis in whole skin organ culture. J. Invest. Dermatol. 99:623–628, 1992.

    Article  PubMed  CAS  Google Scholar 

  33. McGee, G. S., J. M. Davidson, A. Buckley, A. Sommer, S. C. Woodward, A. M. Aquino, R. Barbour, and A. A. Demetriou. Recombinant basic fibroblast growth factor accelerates wound healing. J. Surg. Res. 45:145–153, 1988.

    Article  PubMed  CAS  Google Scholar 

  34. McKee, C. M., M. B. Penno, M. Cowman, M. D. Burdick, R. M. Strieter, C. Bao, and P. W. Noble. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J. Clin. Invest. 98:2403–2413, 1996.

    Article  PubMed  CAS  Google Scholar 

  35. Pasonen-Seppanen, S., S. Karvinen, K. Torronen, J. M. Hyttinen, T. Jokela, M. J. Lammi, M. I. Tammi, and R. Tammi. EGF upregulates, whereas TGF-beta downregulates, the hyaluronan synthases Has2 and Has3 in organotypic keratinocyte cultures: correlations with epidermal proliferation and differentiation. J. Invest. Dermatol. 120:1038–1044, 2003.

    Article  PubMed  Google Scholar 

  36. Passi, A., P. Sadeghi, H. Kawamura, S. Anand, N. Sato, L. E. White, V. C. Hascall, and E. V. Maytin. Hyaluronan suppresses epidermal differentiation in organotypic cultures of rat keratinocytes. Exp. Cell Res. 296:123–134, 2004.

    Article  PubMed  CAS  Google Scholar 

  37. Passos, C. O., C. C. Werneck, G. R. Onofre, E. A. Pagani, A. L. Filgueira, and L. C. Silva. Comparative biochemistry of human skin: glycosaminoglycans from different body sites in normal subjects and in patients with localized scleroderma. J. Eur. Acad. Dermatol. Venereol. 17:14–19, 2003.

    Article  PubMed  CAS  Google Scholar 

  38. Penc, S. F., B. Pomahac, T. Winkler, R. A. Dorschner, E. Eriksson, M. Herndon, and R. L. Gallo. Dermatan sulfate released after injury is a potent promoter of fibroblast growth factor-2 function. J. Biol. Chem. 273:28116–28121, 1998.

    Article  PubMed  CAS  Google Scholar 

  39. Pendergrass, C. J., A. E. Goodship, and G. W. Blunn. Development of a soft tissue seal around bone-anchored transcutaneous amputation prostheses. Biomaterials 27:4183–4191, 2006.

    Article  CAS  Google Scholar 

  40. Penneys, N. S., J. E. Fulton, Jr., G. D. Weinstein, and P. Frost. Location of proliferating cells in human epidermis. Arch. Dermatol. 101:323–327, 1970.

    Article  PubMed  CAS  Google Scholar 

  41. Peramo, A., C. L. Marcelo, S. A. Goldstein, and D. C. Martin. Novel organotypic cultures of human skin explants with an implant-tissue biomaterial interface. Ann. Biomed. Eng. 37:401–409, 2009.

    Article  PubMed  Google Scholar 

  42. Pickup, J. C., F. Hussain, N. D. Evans, and N. Sachedina. In vivo glucose monitoring: the clinical reality and the promise. Biosens. Bioelectron. 20:1897–1902, 2005 (Review).

    Article  PubMed  CAS  Google Scholar 

  43. Resau, J. H., K. Sakamoto, J. R. Cottrell, E. A. Hudson, and S. J. Meltzer. Explant organ culture: a review. Cytotechnology 7:137–149, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Savage, Jr., C. R., and S. Cohen. Proliferation of corneal epithelium induced by epidermal growth factor. Exp. Eye Res. 15:361–366, 1973.

    Article  PubMed  CAS  Google Scholar 

  45. Shafritz, T. A., L. C. Rosenberg, and I. V. Yannas. Specific effects of glycosaminoglycans in an analog of extracellular matrix that delays wound contraction and induces regeneration. Wound Repair Regen. 2:270–276, 1994.

    Article  PubMed  CAS  Google Scholar 

  46. Sivan, V., M. C. Vozenin-Brotons, Y. Tricaud, J. L. Lefaix, J. M. Cosset, B. Dubray, and M. T. Martin. Altered proliferation and differentiation of human epidermis in cases of skin fibrosis after radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 53:385–393, 2002.

    PubMed  Google Scholar 

  47. Sondergaard, K., L. Heickendorff, L. Risteli, J. Risteli, H. Zachariae, K. Stengaard-Pedersen, and B. Deleuran. Increased levels of type I and III collagen and hyaluronan in scleroderma skin. Br. J. Dermatol. 136:47–53, 1997.

    Article  PubMed  CAS  Google Scholar 

  48. Stern, R. Devising a pathway for hyaluronan catabolism: Are we there yet? Glycobiology 13:105R–115R, 2003.

    Article  PubMed  CAS  Google Scholar 

  49. Stoscheck, C. M., L. B. Nanney, and L. E. King, Jr. Quantitative determination of EGF-R during epidermal wound healing. J. Invest. Dermatol. 99:645–649, 1992.

    Article  PubMed  CAS  Google Scholar 

  50. Svensjo, T., B. Pomahac, F. Yao, J. Slama, and E. Eriksson. Accelerated healing of full-thickness skin wounds in a wet environment. Plast. Reconstr. Surg. 106:602–612, 2000.

    Article  PubMed  CAS  Google Scholar 

  51. Tammi, M. I., A. J. Day, and E. A. Turley. Hyaluronan and homeostasis: a balancing act. J. Biol. Chem. 277:4581–4584, 2002.

    Article  PubMed  CAS  Google Scholar 

  52. Trautmann, A., F. Altznauer, M. Akdis, H. U. Simon, R. Disch, E. B. Brocker, K. Blaser, and C. A. Akdis. The differential fate of cadherins during T-cell-induced keratinocyte apoptosis leads to spongiosis in eczematous dermatitis. J. Invest. Dermatol. 117:927–934, 2001.

    Article  PubMed  CAS  Google Scholar 

  53. Tsuboi, R., and D. B. Rifkin. Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice. J. Exp. Med. 172:245–251, 1990.

    Article  PubMed  CAS  Google Scholar 

  54. Varani, J., S. E. G. Fligiel, L. Schuger, P. Perone, D. R. Inman, C. E. M. Griffiths, and J. J. Voorhees. Effects of all-trans retinoic acid and Ca2+ on human skin in organ culture. Am. J. Pathol. 142:189–198, 1993.

    PubMed  CAS  Google Scholar 

  55. Voinchet, V., P. Vasseur, and J. Kern. Efficacy and safety of hyaluronic acid in the management of acute wounds. Am. J. Clin. Dermatol. 7:353–357, 2006.

    Article  PubMed  Google Scholar 

  56. Von Recum, A. F. Applications and failure modes of percutaneous devices: a review. J. Biomed. Mater. Res. 18:323–336, 1984.

    Article  Google Scholar 

  57. Wang, C., M. Tammi, and R. Tammi. Distribution of hyaluronan and its CD44 receptor in the epithelia of human skin appendages. Histochemistry 98:105–112, 1992.

    Article  PubMed  CAS  Google Scholar 

  58. Wang, T. W., H. C. Wu, Y. C. Huang, J. S. Sun, and F. H. Lin. Biomimetic bilayered gelatin-chondroitin 6 sulfate-hyaluronic acid biopolymer as the scaffold for skin equivalent tissue engineering. Artif. Organs 30:141–149, 2006.

    Article  PubMed  CAS  Google Scholar 

  59. Welss, T., D. A. Basketter, and K. R. Schröder. In vitro skin irritation: facts and future. State of the art review of mechanisms and models. Toxicol. In Vitro 8:231–243, 2004.

    Article  CAS  Google Scholar 

  60. Winter, G. D. Transcutaneous implants: reactions of the skin-implant interface. J. Biomed. Mater. Res. 8:99–113, 1974.

    Article  PubMed  CAS  Google Scholar 

  61. Xu, W., D. H. Xu, and A. D. Crocombe. Three-dimensional finite element stress and strain analysis of a transfemoral osseointegration implant. Proc. Inst. Mech. Eng. [H]: J. Eng. Med. 220:661–670, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Harald Eberhart, College of Engineering, University of Michigan, for help with the glass lid design. We thank Marta Dzaman, Morphology Core, University of Michigan for advice on specimen sectioning and staining. This report is presented as part of research efforts within an Army Research Office Multidisciplinary University Research Initiative award on Bio-Integrating Structural and Neural Prosthetic Materials and we gratefully acknowledge the funding provided. Support for this work was also provided by the University of Michigan College of Engineering GAP Funding program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Peramo.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peramo, A., Marcelo, C.L., Goldstein, S.A. et al. Improved Preservation of the Tissue Surrounding Percutaneous Devices by Hyaluronic Acid and Dermatan Sulfate in a Human Skin Explant Model. Ann Biomed Eng 38, 1098–1110 (2010). https://doi.org/10.1007/s10439-009-9872-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9872-1

Keywords

Navigation