Skip to main content
Log in

The Effect of Material Model Formulation in the Stress Analysis of Abdominal Aortic Aneurysms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A reliable estimation of wall stress in Abdominal Aortic Aneurysms (AAAs), requires performing an accurate three-dimensional reconstruction of the medical image-based native geometry and modeling an appropriate constitutive law for the aneurysmal tissue material characterization. A recent study on the biaxial mechanical behavior of human AAA tissue specimens demonstrates that aneurysmal tissue behaves mechanically anisotropic. Results shown in this communication show that the peak wall stress is highly sensitive to the anisotropic model used for the stress analysis. In addition, the present investigation indicates that structural parameters (e.g., collagen fiber orientation) should be determined independently and not by means of non-linear fitting to stress–strain test data. Fiber orientation identified in this manner could lead to overestimated peak wall stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2

References

  1. Di Martino, E. S., and D. A. Vorp. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng. 31:804–809, 2003. doi:10.1114/1.1581880.

    Article  PubMed  Google Scholar 

  2. Drangova, M., D. W. Holdsworth, C. J. Boyd, P. J. Dunmore, M. R. Roach, and A. Fenster. Elasticity and geometry measurements of vascular specimens using a high-resolution laboratory CT scanner. Physiol. Meas. 14:277–290, 1993. doi:10.1088/0967-3334/14/3/006.

    Article  PubMed  CAS  Google Scholar 

  3. Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37:724–732, 2003. doi:10.1067/mva.2003.213.

    Article  PubMed  Google Scholar 

  4. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modeling of arterial layers with distributed collagen fiber orientations. J. R. Soc. Interface 3(6):15–35, 2006. doi:10.1098/rsif.2005.0073.

    Article  PubMed  Google Scholar 

  5. Holzapfel, G. A. Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: Wiley, 2000.

    Google Scholar 

  6. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000. doi:10.1023/A:1010835316564.

    Article  Google Scholar 

  7. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer-Verlag, 2002.

    Google Scholar 

  8. Klinkel, S., and S. Govindjee. Using finite strain 3D-material models in beam and shell elements. Eng. Comput. 19(8):902–921, 2002. doi:10.1108/02644400210450341.

    Article  Google Scholar 

  9. Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution, J. Biomech. Eng. 131(6):061015, 2009. doi:10.1115/1.3127256.

    Google Scholar 

  10. Martufi, G., J. F. Rodriguez, G. J. Parisi, M. Doblare, S. C. Muluk, and E. A. Finol. Nonlinear anisotropic stress analysis of anatomically realistic abdominal aortic aneurysms. J. Biomech. (submitted).

  11. Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33:475–482, 2000. doi:10.1016/S0021-9290(99)00201-8.

    Article  PubMed  CAS  Google Scholar 

  12. Raghavan, M. L., M. W. Webster, and D. A. Vorp. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24:573–582, 1996. doi:10.1007/BF02684226.

    Article  PubMed  CAS  Google Scholar 

  13. Rodriguez, J. F., C. Ruiz, M. Doblare, and G. A. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130:021023, 2008. doi:10.1115/1.2898830.

    Article  PubMed  Google Scholar 

  14. Shum, J., E. S. DiMartino, A. Goldhammer, D. Goldman, L. Acker, G. Patel, J. H. Ng, G. Martufi, and E. A. Finol. Semi-automatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med. Phys. (submitted).

  15. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39:1324–1334, 2006. doi:10.1016/j.jbiomech.2005.03.003.

    Article  Google Scholar 

  16. Vande Geest, J. P., D. E. Schmidt, M. S. Sacks, and D. A. Vorp. The effect of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysm. Ann. Biomed. Eng. 36(6):921–932, 2008. doi:10.1007/s10439-008-9490-3.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Pennsylvania Infrastructure Technology Alliance (a partnership of Carnegie Mellon University, Lehigh University and the Commonwealth of Pennsylvania Department of Community and Economic Development), the Spanish Ministry of Science and Technology through research grant DPI2004-07410-C03-01, the University of Zaragoza, an allocation of advanced computing resources granted by the National Science Foundation through the TeraGrid project at the Pittsburgh Supercomputing Center, and NIH grants R21EB007651, from the National Institute of Biomedical Imaging and Bioengineering, and R15HL087268, from the National Heart, Lung, and Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender A. Finol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, J.F., Martufi, G., Doblaré, M. et al. The Effect of Material Model Formulation in the Stress Analysis of Abdominal Aortic Aneurysms. Ann Biomed Eng 37, 2218–2221 (2009). https://doi.org/10.1007/s10439-009-9767-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9767-1

Keywords

Navigation