Skip to main content
Log in

Aortic Arch Morphogenesis and Flow Modeling in the Chick Embryo

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Morphogenesis of the “immature symmetric embryonic aortic arches” into the “mature and asymmetric aortic arches” involves a delicate sequence of cell and tissue migration, proliferation, and remodeling within an active biomechanical environment. Both patient-derived and experimental animal model data support a significant role for biomechanical forces during arch development. The objective of the present study is to quantify changes in geometry, blood flow, and shear stress patterns (WSS) during a period of normal arch morphogenesis. Composite three-dimensional (3D) models of the chick embryo aortic arches were generated at the Hamburger–Hamilton (HH) developmental stages HH18 and HH24 using fluorescent dye injection, micro-CT, Doppler velocity recordings, and pulsatile subject-specific computational fluid dynamics (CFD). India ink and fluorescent dyes were injected into the embryonic ventricle or atrium to visualize right or left aortic arch morphologies and flows. 3D morphology of the developing great vessels was obtained from polymeric casting followed by micro-CT scan. Inlet aortic arch flow and cerebral-to-lower body flow split was obtained from 20 MHz pulsed Doppler velocity measurements and literature data. Statistically significant variations of the individual arch diameters along the developmental timeline are reported and correlated with WSS calculations from CFD. CFD simulations quantified pulsatile blood flow distribution from the outflow tract through the aortic arches at stages HH18 and HH24. Flow perfusion to all three arch pairs are correlated with the in vivo observations of common pharyngeal arch defect progression. The complex spatial WSS and velocity distributions in the early embryonic aortic arches shifted between stages HH18 and HH24, consistent with increased flow velocities and altered anatomy. The highest values for WSS were noted at sites of narrowest arch diameters. Altered flow and WSS within individual arches could be simulated using altered distributions of inlet flow streams. Thus, inlet flow stream distributions, 3D aortic sac and aortic arch geometries, and local vascular biologic responses to spatial variations in WSS are all likely to be important in the regulation of arch morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Butcher, J., D. Sedmera, R. E. Guldberg, R. R. Markwald, 2006, “Quantitative volumetric analysis of cardiac morphogenesis assessed through micro-computed tomography,” Developmental Dynamics, 236(3), pp. 802–809. doi:10.1002/dvdy.20962

    Article  Google Scholar 

  2. Campbell, K. A., N. Hu, E. B. Clark, B. B. Keller, 1992, “Analysis of dynamic atrial dimension and function during early cardiac development in the chick embryo,” Pediatric Research, 32, pp. 333–337. doi:10.1203/00006450-199209000-00018

    Article  PubMed  CAS  Google Scholar 

  3. Dintenfass, L., 1985, Blood Viscosity, Hyperviscosity and Hyperviscosaemia, MTP Press (Kluwer), London.

    Google Scholar 

  4. Even-Tzur, N., Y. Kloog, M. Wolf, and D. Elad (2008) Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses. Biophys J 95:2998–3008. doi:10.1529/biophysj.107.127142

    Article  PubMed  CAS  Google Scholar 

  5. Feintuch, A., P. Ruengsakulrach, A. Lin, J. Zhang, Y. Q. Zhou, J. Bishop, L. Davidson, D. Courtman, F. S. Foster, D. A. Steinman, R. M. Henkelman, C. R. Ethier 2007, “Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling,” Am. J. Physiol. Heart Circ. Physiol., 292, pp. H884-H892. doi:10.1152/ajpheart.00796.2006

    Article  PubMed  CAS  Google Scholar 

  6. Frakes, D. H., M. J. Smith, J. Parks, S. Sharma, S. M. Fogel, A. P. Yoganathan 2005, “New techniques for the reconstruction of complex vascular anatomies from MRI images,” J Cardiovasc Magn Reson, 7(2), pp. 425–432. doi:10.1081/JCMR-200053637

    Article  PubMed  Google Scholar 

  7. Gardiner, H., J. Brodszki, A. Eriksson, K. Marsál 2002, “Volume blood flow estimation in the normal and growth-restricted fetus,” Ultrasound Med Biol, 28(9), pp. 1107–1113. doi:10.1016/S0301-5629(02)00565-3

    Article  PubMed  Google Scholar 

  8. Greve, J. M., A. S. Les, B. T. Tang, M. T. D. Blomme, N. M. Wilson, R. L. Dalman, N. J. Pelc, C. A. Taylor, 2006, “Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics,” Am. J. Physiol. Heart Circ. Physiol., 291, pp. H1700-H1708. doi:10.1152/ajpheart.00274.2006

    Article  PubMed  CAS  Google Scholar 

  9. Groenendijk, B. C. W., B. P. Hierck, A. C. Gittenberger-de Groot, R. E. Poelmann, 2003, “Development-related changes in the expression of shear stress responsive genes KLF-2, ET-1, and NOS-3 in the developing cardiovascular system of chicken embryos,” Dev. Dyn. 230, pp. 57–68. doi:10.1002/dvdy.20029

    Article  Google Scholar 

  10. Groenendijk, B. C. W., S. Stekelenburg-de Vos, P. Vennemann, J. W. Wladimiroff, F. T. M. Nieuwstadt, R. Lindken, J. Westerweel, B. P. Hierck, N. T. C. Ursem, and R. E. Poelmann (2008) The endothelin-1 pathway and the development of cardiovascular defects in the haemodynamically challenged chicken embryo. J Vasc Res 45:54–68. doi:10.1159/000109077

    Article  PubMed  CAS  Google Scholar 

  11. Guldberg, R. E., C. L. Duvall, A. Peister, M. E. Oest, A. S. Lin, A. W. Palmer, M. E. Levenston 2008, “3D imaging of tissue integration with porous biomaterials,” Biomaterials, 29(28), pp. 3757–3761. doi:10.1016/j.biomaterials.2008.06.018

    Article  PubMed  CAS  Google Scholar 

  12. Hamburger, V., H. L. Hamilton 1951, “A series of normal stages in the development of the chick embryo,” Journal of Morphology, 88(1), pp. 49–92. doi:10.1002/jmor.1050880104

    Article  Google Scholar 

  13. Himburg H. A., Dowd S. E., and Friedman M. H. (2007) Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am J Physiol Heart Circ Physiol 293(1):H645–653. doi:10.1152/ajpheart.01087.2006

    Article  PubMed  CAS  Google Scholar 

  14. Hiruma, T., R. Hirakow, 1995, “Formation of the pharyngeal arch arteries in the chick embryo. Observations of corrosion casts by scanning electron microscopy,” Anat Embryol, 191, pp. 415–423. doi:10.1007/BF00304427

    Article  PubMed  CAS  Google Scholar 

  15. Hiruma, T., Y. Nakajima, H. Nakamura, 2002, “Development of pharyngeal arch arteries in early mouse embryo,” J. Anat., 201, pp. 15–29. doi:10.1046/j.1469-7580.2002.00071.x

    Article  PubMed  Google Scholar 

  16. Hogers, B., M. C. DeRuiter, A. M. J. Baasten, A. C. Gittenberger-de Groot, R. E. Poelmann 1995, “Intracardiac blood flow patterns related to the yolk sac circulation of the chick embryo,” Circ. Res., 76, pp. 871–877.

    PubMed  CAS  Google Scholar 

  17. Hogers, B., M. C. DeRuiter, A. C. Gittenberger-de Groot and R. E. Poelmann (1997) Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 80:473–481

    PubMed  CAS  Google Scholar 

  18. Hogers, B., M. C. DeRuiter, A. C. Gittenberger-de Groot, R. E. Poelmann, 1999, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res., 41, pp. 87–99. doi:10.1016/S0008-6363(98)00218-1

    Article  PubMed  CAS  Google Scholar 

  19. Hove, J. R., R. W. Koster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, M. Gharib, 2003, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature, 421, pp. 172–177. doi:10.1038/nature01282

    Article  PubMed  CAS  Google Scholar 

  20. Hu, N., E. B. Clark, 1989, “Hemodynamics of the stage 12 to stage 29 chick embryo,” Circ Res., 65(6), pp. 1665–1670.

    PubMed  CAS  Google Scholar 

  21. Hubbard, A. M., and Harty, P., 1999, “Prenatal magnetic resonance imaging of fetal anomalies,” Semin Roentgenol, 34(1), pp. 41–47. doi:10.1016/S0037-198X(99)80019-4

    Article  PubMed  CAS  Google Scholar 

  22. Huo, Y. X. G., G. S. Kassab, 2008, “The flow field along the entire length of mouse aorta and primary branches,” Ann. Biomed. Eng. 36, pp. 685–699. doi:10.1007/s10439-008-9473-4

    Article  PubMed  Google Scholar 

  23. Jin, S., J. Oshinski, D. P. Giddens, 2003, “Effects of wall motion and compliance on flow patterns in the ascending aorta,” J. Biomech. Eng. 125, pp. 347–354. doi:10.1115/1.1574332

    Article  PubMed  Google Scholar 

  24. Kurihara, Y., H. Kurihara, H. Oda, K. Maemura, R. Nagai, T. Ishikawa, Y. Yazaki, 1995, “Aortic arch malformation and ventricular septal defect in mice deficient in endothelin-1,” J. Clin. Invest., 96, pp. 293–300. doi:10.1172/JCI118033

    Article  PubMed  CAS  Google Scholar 

  25. Leuprecht, A., S. Kozerke, P. Boesiger, K. Perktold, 2003, “Blood flow in the human ascending aorta: a combined MRI and CFD study,” J. Eng. Math. 47, pp. 387–404. doi:10.1023/B:ENGI.0000007969.18105.b7

    Article  Google Scholar 

  26. Leyhane J. C. (1969) Visualization of blood streams in the developing chick heart. Anat. Rec. 163:312–313.

    Google Scholar 

  27. McQuinn, T. C., M. Bratoeva, A. de Almeida, M. Remond, R. P. Thompson, D. Sedmera, 2007, “High-frequency ultrasonographic imaging of Avian Cardiovascular Development,” Dev. Dyn. 236, pp. 3503–3513. doi:10.1002/dvdy.21357

    Article  PubMed  Google Scholar 

  28. Morris, L., P. Delassus, A. Callanan, M. Walsh, F. Wallis, P. Grace, T. McGloughlin, 2005, “3-D numerical simulation of blood flow through models of the human aorta,” J. Biomech. Eng. 127, pp. 767–775. doi:10.1115/1.1992521

    Article  PubMed  CAS  Google Scholar 

  29. Mujumdar, R. B., L. A. Ernst, S. R. Mujumdar, C. J. Lewis, A. S. Waggoner, 1993, “Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters,” Bioconjug Chem., 4(2), pp. 105–111. doi:10.1021/bc00020a001

    Article  PubMed  CAS  Google Scholar 

  30. Ohno, M., Cooke, J. P., Dzau, V. J., and Gibbons, G. H., 1995, “Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade,” J Clin Invest, 95(3), pp. 1363-1369. doi:10.1172/JCI117787

    Article  PubMed  CAS  Google Scholar 

  31. Pekkan, K., D. de Zélicourt, L. Ge, F. Sotiropoulos, D. Frakes, M. A. Fogel, A. P. Yoganathan 2005, “Physics-driven CFD modeling of complex anatomical cardiovascular flows—a TCPC case study,” Ann Biomed Eng., 33(3), pp. 284–300. doi:10.1007/s10439-005-1731-0

    Article  PubMed  Google Scholar 

  32. Pekkan, K., L. P. Dasi, P. Nourparvar, S. Yerneni, K. Tobita, M. A. Fogel, B. B. Keller, A. Yoganathan, 2008, “In vitro hemodynamic investigation of the embryonic aortic arch at late gestation,” J. Biomech. 41, pp. 1697–1706. doi:10.1016/j.jbiomech.2008.03.013

    Article  PubMed  Google Scholar 

  33. Pekkan, K., O. Dur, K. Kanter, K. Sundareswaran, M. Fogel, A. Yoganathan, and A. Ündar (2008) Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass. J Biomech Eng 130:061012.

    Article  PubMed  Google Scholar 

  34. Peolma, C., P. Vennemann, R. Lindken, and J. Westerweel (2008) In vivo blood flow and wall shear stress measurements in the vitelline network. Exp Fluids 45:703–713

    Article  Google Scholar 

  35. Poelmann, R. E., A. C. Gittenberger-de Groot, B. P. Hierck, 2008, “The development of the heart and microcirculation: role of shear stress,” Med Biol Eng Comput, 46, pp. 479–484. doi:10.1007/s11517-008-0304-4

    Article  PubMed  Google Scholar 

  36. Ravnic, D. J., Y. Z. Zhang, A. Tsuda, J. P. Pratt, H. T. Huss, S. J. Mentzer, 2006, “Multi-image particle tracking velocimetry of the microcirculation using fluorescent nanoparticles,” Microvasc. Res. 72, pp. 27–33. doi:10.1016/j.mvr.2006.04.006

    Article  PubMed  CAS  Google Scholar 

  37. Romanoff, A., 1961, Avian Embryo, Structural and Functional Development, Macmillan.

    Google Scholar 

  38. Rudolph, A. M., M. A. Heymann 1970, “Circulatory changes during growth in the fetal lamb,” Circ Res., 26(3), pp. 289–299.

    PubMed  CAS  Google Scholar 

  39. Sadler T. W. (2005) Langman’s Medical Embryology. Lippincott Williams, Philadelphia, pp. 159–194

    Google Scholar 

  40. Schleich, J.-M., Pontchaillou, C. A., Dillenseger, J.-L., and Coatrieux, J.-L. (2002) Understanding normal cardiac development using animated models. IEEE Comput Graph Appl 22(1):14–19. doi:10.1109/38.974513

    Article  Google Scholar 

  41. Sims, P. J., A. S. Waggoner, C.-H. Wang, J. F. Hoffman, 1974, “Studies on mechanism by which cyanine dyes measure membrane-potential in red blood-cells and phosphatidylcholine vesicles,” Biochemistry, 13(16), pp. 3315–3330. doi:10.1021/bi00713a022

    Article  PubMed  CAS  Google Scholar 

  42. Suo, J., D. E. Ferrara, E. Sorescu, R. E. Guldberg, W. R. Taylor, and D. P. Giddens (2007) Hemodynamic shear stress in mouse aortas implications for atherogenesis. Arterioscler Thromb Vasc Biol 27:346–351. doi:10.1161/01.ATV.0000253492.45717.46

    Article  PubMed  CAS  Google Scholar 

  43. Taber, L. A., N. Hu, T. Pexieder, E. B. Clark, B. B. Keller 1993, “Residual strain in the ventricle of the stage 16–24 chick embryo.,” Circ Res 72(2):455–462.

    PubMed  CAS  Google Scholar 

  44. Ursell, P. C., J. M. Byrne, T. R. Fears, B. A. Strobino, W. M. Gersony 1991, “Growth of the great vessels in the normal human fetus and in the fetus with cardiac defects,” Circulation, 84(5), pp. 2028–2033.

    PubMed  CAS  Google Scholar 

  45. Vennemann, P., K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westerweel, B. P. Hierck, 2006, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, pp. 1191–1200. doi:10.1016/j.jbiomech.2005.03.015

    Article  PubMed  Google Scholar 

  46. Waldo, K. L., M. R. Hutson, C.C. Ward, M. Zdanowicz, H. A. Stadt, D. Kumiski, R. Abu-Issa, M. L. Kirby 2005, “Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart,” Dev. Biol. 281, pp. 78–90. doi:10.1016/j.ydbio.2005.02.012

    Article  PubMed  CAS  Google Scholar 

  47. Wang, C., K. Pekkan, D. de Zelicourt, A. Parihar, A. Kulkarni, M. Horner, A. P. Yoganathan 2007, “Progress in the CFD Modeling of Flow Instability in Anatomical Total Cavopulmonary Connections,” Ann. Biomed. Eng. 35(11), pp. 1840–1856. doi:10.1007/s10439-007-9356-0

    Article  PubMed  Google Scholar 

  48. Yoshida, H., F. Manasek, R. A. Arcilla, 1983, “Intracardiac flow patterns in early embryonic life., “Circ. Res., 53, pp. 363–371

    PubMed  CAS  Google Scholar 

  49. Yoshigi, M., Knott, G. D., Keller, B. B., 2000, “Lumped parameter estimation for the embryonic chick vascular system: a time-domain approach using MLAB,” Comput. Methods Programs Biomed. 63, pp. 29–41. doi:10.1016/S0169-2607(00)00061-4

    Article  PubMed  CAS  Google Scholar 

  50. 20. Young, S., Kretlow, J. D., Nguyen, C., Bashoura, A. G., Baggett, L. S., Jansen, J. A., Wong, M., and Mikos, A. G. (2008) Microcomputed tomography characterization of neovascularization in bone tissue engineering application. Tissue Eng Part B Rev 14:295–306

    Article  PubMed  CAS  Google Scholar 

  51. Zamir, M., P. Sinclair, T. H. Wonnacott 1992, “Relation between diameter and flow in major branches of the arch of the aorta,” J Biomech, 25(11), pp. 1303–1310. doi:10.1016/0021-9290(92)90285-9

    Article  PubMed  CAS  Google Scholar 

  52. Ziegler T., Bouzourène K., Harrison V. J., Brunner H. R., and Hayoz D. (1998) Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler Thromb Vasc Biol. 18(5):686–692

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by American Heart Association Beginning-Grant-in-Aid 0765284U (PI: Pekkan) and by the Children’s Hospital of Pittsburgh Foundation. Gratitude is expressed to Dr. Arvydas Usas for the micro-CT scanning. Dr. James Fitzpatrick, Dr. Greg Fisher, and Dr. Alan Waggoner provided valuable expertise on microscopy and fluorescent dye studies. We also acknowledge Pittsburgh Supercomputing Center Grant CCR080013 facilitating high-performance parallel CFD runs presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerem Pekkan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 3260 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Dur, O., Patrick, M.J. et al. Aortic Arch Morphogenesis and Flow Modeling in the Chick Embryo. Ann Biomed Eng 37, 1069–1081 (2009). https://doi.org/10.1007/s10439-009-9682-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9682-5

Keywords

Navigation