Skip to main content
Log in

A Numerical Method for Cardiac Mechanoelectric Simulations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Much effort has been devoted to developing numerical techniques for solving the equations that describe cardiac electrophysiology, namely the monodomain equations and bidomain equations. Only a limited selection of publications, however, address the development of numerical techniques for mechanoelectric simulations where cardiac electrophysiology is coupled with deformation of cardiac tissue. One problem commonly encountered in mechanoelectric simulations is instability of the coupled numerical scheme. In this study, we develop a stable numerical scheme for mechanoelectric simulations. A number of convergence tests are carried out using this stable technique for simulations where deformations are of the magnitude typically observed in a beating heart. These convergence tests demonstrate that accurate computation of tissue deformation requires a nodal spacing of around 1 mm in the mesh used to calculate tissue deformation. This is a much finer computational grid than has previously been acknowledged, and has implications for the computational efficiency of the resulting numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Costa, K. D., J. W. Holmes, and A. D. McCulloch. Modelling cardiac mechanical properties in three dimensions. Philos. Trans. R. Soc. Lond. A 359:1233-1250, 2001.

    Article  Google Scholar 

  2. Guccione, J. M., K. D. Costa, and A. D. McCulloch. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J. Biomech. 28:1167–1177, 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Guccione, J. M., and A. D. McCulloch. Mechanics of active contraction in cardiac muscle: part I—constitutive relations for fibre stress that describe deactivation. Trans. ASME 115:72–81, 1993.

    CAS  Google Scholar 

  4. Gurev, V., M. M. Maleckar, and N. A. Trayanova. Cardiac defibrillation and the role of mechanoelectric feedback in postshock arrhythmogenesis. Ann. N. Y. Acad. Sci. 1080:320-333, 2006.

    Article  PubMed  Google Scholar 

  5. Hunter, P. J., A. D. McCulloch, and H. E. D. J. ter Keurs. Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69:289–331, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Hunter, P. J., M. P. Nash, and G. B. Sands. “Computational mechanics of the heart.” In: Computational Biology of the Heart, edited by A. V. Panfilov, and A. V. Holden, Wiley, West Sussex, UK, 1997, pp. 345–407.

    Google Scholar 

  7. Keener, J. P., and J. Sneyd. Mathematical Physiology. Springer-Verlag, New York, 1998.

    Google Scholar 

  8. Kerckhoffs, R. C. P., S. N. Healy, T. P. Usyk, and A. D. McCulloch. Computational methods for cardiac electromechanics. Proc. IEEE 94:769–783, 2006.

    Article  Google Scholar 

  9. Luo, C. H., and Y. Rudy. A dynamic model of the cardiac ventricular action potential: I. Simulations of ionic currents and concentration changes. Circ. Res. 68: 1501–1526, 1991.

    PubMed  CAS  Google Scholar 

  10. Nash, M. P., and P. J. Hunter. Computational mechanics of the heart. J. Elast. 61:113–141, 2000.

    Article  Google Scholar 

  11. Nash, M. P., and A. V. Panfilov. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Mol. Biol. 85:501–522, 2004.

    Article  PubMed  Google Scholar 

  12. Nickerson, D. P., M. P. Nash, P. F. Nielsen, N. P. Smith, and P. J. Hunter. Computational multiscale modeling in the IUPS Physiome Project: modeling cardiac electromechanics. IBM J. Res. Dev. 50:617–630, 2006.

    Article  Google Scholar 

  13. Nickerson, D. P., N. P. Smith, and P. J. Hunter. New developments in a strongly coupled cardiac electromechanical model. Europace 7:S118–S127, 2005.

    Article  Google Scholar 

  14. Niederer S. A., Hunter P. J., Smith N. P. (2006) A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys. J. 90:1697–1722

    Article  PubMed  CAS  Google Scholar 

  15. Niederer, S. A., and N. P. Smith. An improved numerical method for strong coupling of excitation and contraction models in the heart. Prog. Biophys. Mol. Biol. 96:90–111, 2008.

    Article  PubMed  CAS  Google Scholar 

  16. Noble, D., A. Varghese, P. Kohl, and P. J. Noble. Improved guinea-pig ventricular cell model incorporating a diadic space, I Kr and I Ks , and length- and tension-dependent processes. Can. J. Cardiol. 14:123–134, 1998.

    PubMed  CAS  Google Scholar 

  17. Peterson, J. N., W. C. Hunter, and M. R. Berman. Estimated time course of Ca2+ bound to troponin C during relaxation in isolated cardiac muscle. Am. J. Physiol. 260:H1013–H1024, 1991.

    PubMed  CAS  Google Scholar 

  18. Remme, E. W., M. P. Nash, and P. J. Hunter. “Distributions of myocyte stretch, stress and work in models of normal and infarcted ventricles.” In: Cardiac Mechano-Electric Feedback and Arrhythmias: From Pipette to Patient, edited by P. Kohl, F. Sachs, and M. R. Franz, Saunders–Elsevier, UK, 2005, 381–391.

    Google Scholar 

  19. Schmid, H., M. P. Nash, A. A. Young, and P. J. Hunter. Myocardial material parameter estimation—a comparative study for simple shear. Trans. ASME 128:742–750, 2006.

    CAS  Google Scholar 

  20. Smith, N. P., D. P. Nickerson, E. J. Crampin, and P. J. Hunter. Multiscale computational modelling of the heart. Acta Numer. 13:371–431, 2004.

    Article  Google Scholar 

  21. ten Tusscher, K. H. W. J. D, D. Noble, P. J. Noble and A. V. Panfilov. A model for human ventricular tissue. Am. J. Physiol. 286:H1573–H1589, 2004.

    Google Scholar 

  22. Usyk T. P., Mazhari R., McCulloch A. D. (2000) Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast. 61:143–164

    Article  Google Scholar 

  23. Whiteley, J. P. An efficient technique for the solution of the monodomain and bidomain equations. IEEE Trans. Biomed. Eng. 53:2139–2147, 2006.

    Article  PubMed  Google Scholar 

  24. Whiteley, J. P. Physiology driven adaptivity for the numerical solution of the bidomain equations. Ann. Biomed. Eng. 35:1510–1520, 2007.

    Article  PubMed  Google Scholar 

  25. Whiteley, J. P., M. J. Bishop, and D. J. Gavaghan. Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations. Bull. Math. Biol. 69:2199–2225, 2007.

    Article  PubMed  Google Scholar 

  26. Whiteley, J. P., D. J. Gavaghan, S. J. Chapman and J. M. Brady. Non–linear modelling of breast tissue. Math. Med. Biol. 24:327–345, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

PP is pleased to acknowledge the support of the EPSRC through grant EP/D048400/1, “New frontiers in the mathematics of solids,” and JPW is pleased to acknowledge the support of the EPSRC through grant EP/D503035/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Whiteley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathmanathan, P., Whiteley, J.P. A Numerical Method for Cardiac Mechanoelectric Simulations. Ann Biomed Eng 37, 860–873 (2009). https://doi.org/10.1007/s10439-009-9663-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9663-8

Keywords

Navigation