Skip to main content
Log in

Computational Model Provides Insight into the Distinct Responses of Neurons to Chemical and Topographical Cues

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Neuronal cell polarization (i.e., establishment of an axon) and axon guidance are mediated and controlled by mechanical and chemical signals from the environment. Unfortunately, an integrated approach to study cell–substrate interactions in a unified framework incorporating structural and chemical effects of the substrate has been lacking. In this paper, we present a new model combining experimental and computational methods to better understand the distinct behavior of E18 hippocampal neurons in response to topographical vs. immobilized chemical cues. We present results from our coarse-grain physiological computational model that correctly describes previously observed phenomena and predicts behavior that was subsequently tested through new experiments. The model differentiates topographical from chemical cues via a difference in cue spacing in these two substrates. Using the feature size spacing for topographical cues and a minimum step size, governed by the physics of filopodia protrusion, for chemical cues, the model successfully mimics the trend observed in experimental polarization probability for four different topographical feature sizes and constant chemical cue spacing. Our results not only show good agreement with experiments, but also provide novel suggestions for development of substrates for finer control of neuronal cell polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aoki K., T. Nakamura, M. Matsuda. 2004 Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells. J. Biol. Chem., 279:713–719

    Article  PubMed  CAS  Google Scholar 

  2. Banker G. A., M. W. Cowan. 1977 Rat hippocampal neurons in dispersed cell culture. Brain Res, 126:397–342

    Article  PubMed  CAS  Google Scholar 

  3. Bentley D., T. P. O’Connor. 1994 Cytoskeletal events in growth cone steering. Curr Opin Neurobiol 4:43–48

    Article  PubMed  CAS  Google Scholar 

  4. Brann A. B., R. Scott, Y. Neuberger, D. Abulafia, S. Boldin, M. Fainzilber, H. A. Futerman. 1999 Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J Neurosci, 19:8199–8206

    PubMed  CAS  Google Scholar 

  5. Bray D., J. P. Hollenbeck. 1988 Growth cone motility and guidance. Annu Rev Cell Biol 4:43–61

    Article  PubMed  CAS  Google Scholar 

  6. Britland S., P. Clark, P. Connolly, G. Moores. 1992 Micropatterned substratum adhesiveness: a model for morphogenetic cues controlling cell behavior. Exp Cell Res, 198:124–129

    Article  PubMed  CAS  Google Scholar 

  7. Clark P., S. Britland, P. Connolly. 1993 Growth cone guidance and neuron morphology on micropatterned laminin surfaces. J. Cell Sci. 105(Pt 1):203–212

    PubMed  CAS  Google Scholar 

  8. Clark P., P. Connolly, S. A. Curtis, A. J. Dow, D. C. Wilkinson. 1987 Topographical control of cell behaviour. I. Simple step cues. Development, 99:439–448

    PubMed  CAS  Google Scholar 

  9. Clark P., P. Connolly, S. A. Curtis, A. J. Dow, D. C. Wilkinson. 1990 Topographical control of cell behaviour: II. Multiple grooved substrata. Development, 108:635–644

    PubMed  CAS  Google Scholar 

  10. Curtis A., C. Wilkinson. 1997 Topographical control of cells. Biomaterials, 18:1573–1583

    Article  PubMed  CAS  Google Scholar 

  11. Dotti C. G., A. C. Sullivan, A. G. Banker. 1988 The Establishment of Polarity by Hippocampal Neurons in Culture. The Journal of Neuroscience 8:1454–1468

    PubMed  CAS  Google Scholar 

  12. Ebadi M., M. R. Bashir, L. M. Heidrick, M. F. Hamada, E. H. Refaey, A. Hamed, G. Helal, D. M. Baxi, R. D. Cerutis, K. N. Lassi. 1997 Neurotrophins and their receptors in nerve injury and repair. Neurochem Int, 30:347–374

    Article  PubMed  CAS  Google Scholar 

  13. Engler A. J., S. Sen, L. H. Sweeney, E. D. Discher. 2006 Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126:677–689

    Article  PubMed  CAS  Google Scholar 

  14. Esch T., V. Lemmon, G. Banker. 1999 Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons. J Neurosci 19:6417–6426

    PubMed  CAS  Google Scholar 

  15. Gallo G., C. P. Letourneau. 1998 Localized sources of neurotrophins initiate axon collateral sprouting. J Neurosci, 18:5403–5414

    PubMed  CAS  Google Scholar 

  16. Georges P. C., J. W. Miller, F. D. Meaney, S. E. Sawyer, A. P. Janmey. 2006 Matrices with Compliance Comparable to that of Brain Tissue Select Neuronal over Glial Growth in Mixed Cortical Cultures. Biophys J, 90:3012–3018

    Article  PubMed  CAS  Google Scholar 

  17. Gomez N., S. Chen, E. C. Schmidt. 2007 Polarization of hippocampal neurons with competitive surface stimuli: contact guidance cues are preferred over chemical ligands. J R Soc Interface, 4:223–233

    Article  PubMed  CAS  Google Scholar 

  18. Gomez N., Y. Lu, S. Chen, E. C. Schmidt. 2007 Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture. Biomaterials, 28:271–284

    Article  PubMed  CAS  Google Scholar 

  19. Gomez N., E. C. Schmidt. 2007 Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J Biomed Mater Res A, 81:135–149

    PubMed  Google Scholar 

  20. Goslin K., G. Banker. 1989 Experimental observations on the development of polarity by hippocampal neurons in culture. J Cell Biol 108:1507–1516

    Article  PubMed  CAS  Google Scholar 

  21. Graham B. P., Av Ooyen. 2001 Compartmental Models of Growing Neurites. Neurocomputing, 38–40:31–36

    Article  Google Scholar 

  22. Graham B. P., A. van Ooyen. 2006 Mathematical modelling and numerical simulation of the morphological development of neurons. BMC Neurosci 7(Suppl 1):S9

    Article  PubMed  Google Scholar 

  23. Hatten M. E. 1999 Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    Article  PubMed  CAS  Google Scholar 

  24. Hely T. A., B. Graham, Av Ooyen. 2001 A computational Model of Dendrite Elongation and Branching Based on MAP2 phosphorylation. Journal Theoretical Biology, 210:375–384

    Article  PubMed  CAS  Google Scholar 

  25. Ito Y., G. Chen, Y. Imanishi. 1998 Micropatterned immobilization of epidermal growth factor to regulate cell function. Bioconjug Chem, 9:277–282

    Article  PubMed  CAS  Google Scholar 

  26. Kapur T. A., S. M. Shoichet. 2003 Chemically-bound nerve growth factor for neural tissue engineering applications. J Biomater Sci Polym Ed 14:383–394

    Article  PubMed  CAS  Google Scholar 

  27. Kapur T. A., S. M. Shoichet. 2004 Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. J Biomed Mater Res A 68:235–243

    Article  PubMed  Google Scholar 

  28. Kiddie G., D. McLean, Av. Ooyen, B. Graham. 2005 Biologically plausible models of neurite outgrowth. Progress in Brain Research, 147:67–80

    Article  PubMed  CAS  Google Scholar 

  29. Kotwal A., E. C. Schmidt. 2001 Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 22:1055–1064

    Article  PubMed  CAS  Google Scholar 

  30. Lambert de Rouvroit C., M. A. Goffinet. 2001 Neuronal migration. Mech Dev 105:47–56

    Article  PubMed  CAS  Google Scholar 

  31. Lein P. J., A. G. Banker, D. Higgins. 1992 Laminin selectively enhances axonal growth and accelerates the development of polarity by hippocampal neurons in culture. Brain Res Dev Brain Res 69:191–197

    Article  PubMed  CAS  Google Scholar 

  32. Letourneau P. C. 1978 Chemotactic response of nerve fiber elongation to nerve growth factor. Dev Biol 66:183–196

    Article  PubMed  CAS  Google Scholar 

  33. Lu Y.-B., K. Franze, G. Seifert, C. SteinhÃuser, F. Kirchhoff, H. Wolburg, J. Guck, P. Janmey, E.-Q. Wei, J. KÃs, A Reichenbach. 2006 Viscoelastic properties of individual glial cells and neurons in the CNS. Proceedings of the National Academy of Sciences, 103:17759–17764

    Article  PubMed  CAS  Google Scholar 

  34. Matsuda T., T. Sugawara. 1995 Development of surface photochemical modification method for micropatterning of cultured cells. J Biomed Mater Res, 29:749–756

    Article  PubMed  CAS  Google Scholar 

  35. Menager C., N. Arimura, Y. Fukata, K. Kaibuchi. 2004 PIP3 is involved in neuronal polarization and axon formation. J Neurochem, 89:109–118

    Article  PubMed  CAS  Google Scholar 

  36. Miller C., S. Jeftinija, S. Mallapragada. 2001 Micropatterned Schwann cell-seeded biodegradable polymer substrates significantly enhance neurite alignment and outgrowth. Tissue Eng 7:705–715

    Article  PubMed  CAS  Google Scholar 

  37. Ming G. L., T. S. Wong, J. Henley, B. X. Yuan, J. H. Song, C. N. Spitzer, M. M. Poo. 2002 Adaptation in the chemotactic guidance of nerve growth cones. Nature 417:411–418

    Article  PubMed  CAS  Google Scholar 

  38. Mogilner A., B. Rubinstein. 2005 The physics of filopodial protrusion. Biophys J, 89:782–795

    Article  PubMed  CAS  Google Scholar 

  39. Moore K., M. MacSween, M. Shoichet. 2006 Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. Tissue Eng, 12:267–278

    Article  PubMed  CAS  Google Scholar 

  40. Mueller B. K. 1999 Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 22:351–388

    Article  PubMed  CAS  Google Scholar 

  41. Nishimura T., K. Kato, T. Yamaguchi, Y. Fukata, S. Ohno, K. Kaibuchi. 2004 Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat Cell Biol, 6:328–334

    Article  PubMed  CAS  Google Scholar 

  42. Norris C. R., K. Kalil. 1991 Guidance of callosal axons by radial glia in the developing cerebral cortex. J Neurosci, 11:3481–3492

    PubMed  CAS  Google Scholar 

  43. Odde D. J., M. E. Tanaka, S. S. Hawkins, M. H. Buettner. 1996 Stochastic Dynamics of the Nerve Growth Cone and Its Microtubules During Neurite Outgrowth. Biotechnology and Bioengineering, 50:452–461

    Article  PubMed  CAS  Google Scholar 

  44. Pini A. 1994 Axon guidance. Growth cones say no. Curr Biol 4:131–133

    Article  PubMed  CAS  Google Scholar 

  45. Rajnicek A., S. Britland, C. McCaig. 1997 Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J. Cell Sci. 110(Pt 23):2905–2913

    PubMed  Google Scholar 

  46. Rehfeldt F., J. A. Engler, A. Eckhardt, F. Ahmed, E. D. Discher. 2007 Cell responses to the mechanochemical microenvironment–Implications for regenerative medicine and drug delivery. Advanced Drug Delivery Reviews, 59:1329–1339

    Article  PubMed  CAS  Google Scholar 

  47. Rogers S. L., C. P. Letourneau, L. S. Palm, J. McCarthy, T. L. Furcht. 1983 Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin. Dev Biol 98:212–220

    Article  PubMed  CAS  Google Scholar 

  48. Schwamborn J. C., W. A. Puschel. 2004 The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci, 7:923–929

    Article  PubMed  CAS  Google Scholar 

  49. Singer M., H. R. Nordlander, M. Egar. 1979 Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blueprint hypothesis of neuronal pathway patterning. J Comp Neurol, 185:1–21

    Article  PubMed  CAS  Google Scholar 

  50. Stoeckli E. T., T. L. Landmesser. 1998 Axon guidance at choice points. Curr Opin Neurobiol 8:73–79

    Article  PubMed  CAS  Google Scholar 

  51. Tessier-Lavigne M., S. C. Goodman. 1996 The molecular biology of axon guidance. Science 274:1123–1133

    Article  PubMed  CAS  Google Scholar 

  52. Yamashita T., M. Tohyama. 2003 The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci, 6:461–467

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the assistance of Tianyi Yang, Natalia Gomez, and members of the Schmidt and Zaman labs for numerous enlightening discussions. The resources of the NST and MRC at the University of Texas at Austin are gratefully acknowledged. This work was supported by faculty development startup funds from the Cockrell School of Engineering to MHZ and by an NIH Grant (R21 EB003416) to CES.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christine E. Schmidt or Muhammad H. Zaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forciniti, L., Schmidt, C.E. & Zaman, M.H. Computational Model Provides Insight into the Distinct Responses of Neurons to Chemical and Topographical Cues. Ann Biomed Eng 37, 363–374 (2009). https://doi.org/10.1007/s10439-008-9613-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9613-x

Keywords

Navigation