Skip to main content
Log in

In Vivo Quantification of Helical Blood Flow in Human Aorta by Time-Resolved Three-Dimensional Cine Phase Contrast Magnetic Resonance Imaging

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mechanics of blood flow in arteries plays a key role in the health of individuals. In this framework, the role played by the presence of helical flow in the human aorta is still not clear in its relation to physiology and pathology. We report here a method for quantifying helical flow in vivo employing time-resolved cine phase contrast magnetic resonance imaging to obtain the complete spatio-temporal description of the three-dimensional pulsatile blood flow patterns in aorta. The method is applied to data of one healthy volunteer. Particle traces were calculated from velocity data: to them we applied a Lagrangian-based method for helical flow quantification, the Helical Flow Index, which has been developed and evaluated in silico in order to reveal global organization of blood flow. Our results: (i) put in evidence that the systolic hemodynamics in aorta is characterized by an evolving helical flow (we quantified a 24% difference in terms of the content of helicity in the streaming blood, between mid and early systole); (ii) indicate that in the first part of the systole helicity is ascrivable mainly to the asymmetry of blood flow in the left ventricle, joined with the laterality of the aorta. In conclusion, this study shows that the quantification of helical blood flow in vivo is feasible, and it might allow detection of anomalies in the expected physiological development of helical flow in aorta and accordingly, could be used in a diagnostic/prognostic index for clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9

Similar content being viewed by others

References

  1. Baciewicz F. A., D. G. Penney, W. A. Marinelli, R. Marinelli. Torsional ventricular motion and rotary blood flow. What is the clinical significance. Cardiac Chronicle 5, 1–8, 1991

    Google Scholar 

  2. Belian A., O. Chkhetiani, E. Golbraikh, S. Moiseev. (1998) Helical turbulence: turbulent viscosity and instability of the second moments. Physica A 258(1–2), 55–68

    Article  Google Scholar 

  3. Bellhouse B. J., L. Talbot. (1969) The fluid mechanics of die aortic valve. J. Fluid Mech. 35:721–736

    Article  Google Scholar 

  4. Bogren H. G., R. H. Klipstein, D. N. Firmin, S. R. Underwood, D. B. Longmore. (1989) Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic resonance. Am. Heart J. 117, 1214–1222

    Article  PubMed  CAS  Google Scholar 

  5. Buonocore M. H., H. G. Bogren. (1999) Analysis of fow patterns using MRI. Int. J. Card. Imaging 15, 99–103

    Article  PubMed  CAS  Google Scholar 

  6. Caro C. G., D. J. Doorly, M. Tarnawski, K. T. Scott, Q. Long, C. L. Dumoulin. (1996) Non-planar curvature and branching of arteries and non-planar-type flow. Proc. R. Soc. Lond. A 452, 185–197

    Article  Google Scholar 

  7. Chandran K. B. (1993) Flow dynamics in the human aorta. J. Biomech. Eng. 115, 611–616

    Article  PubMed  CAS  Google Scholar 

  8. Chandran K. B., W. M. Swanson, D. N. Ghista, H. W. Vayo. (1974) Oscillatory flow in thin-walled curved elastic tubes. Ann. Biomed. Eng. 2(4), 392–412

    Article  PubMed  CAS  Google Scholar 

  9. Chandran, K. B., and T. L. Yearwood. Experimental study of physiological pulsatile flow in a curved tube. J. Fluid Mech. 111:59–85, 1981

    Google Scholar 

  10. Chandran K. B., T. L. Yearwood, D. W. Wieting. (1979) An experimental study of pulsatile flow in a curved tube. J. Biomech. 12(10), 793–805

    Article  PubMed  CAS  Google Scholar 

  11. Darmofal D. L., R. Haimes. (1996) An analysis of 3D particle path integration algorithms. J. Comput. Phys. 123(1), 182–195

    Article  Google Scholar 

  12. David, L., A. Esnault, and D. Calluaud. (2002) Comparison of techniques of interpolation for 2D and 3D velocimetry. In: Proceedings of the Eleventh International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon. Instituto Superior Técnico, Lisbon

  13. Dean W. R. (1927) Note on the motion of a curved pipe. Philos. Mag. 7(4), 208–223

    Google Scholar 

  14. Farthing S., P. Peronneau. (1979) Flow in die thoracic aorta. Cardiovasc. Res. 13, 607–620

    Article  PubMed  CAS  Google Scholar 

  15. Firmin D., J. Keegan. (2001) Navigator echoes in cardiac magnetic resonance. J. Cardiovasc. Magn. Reson. 3(3), 183–193

    Article  PubMed  CAS  Google Scholar 

  16. Fogel M. A., P. M. Weinberg, A. K. Hoydu Anne, M. Hubbard, J. Rychik, M. L. Jacobs, K. E. Fellows, J. Haselgrove. (1997) Effect of surgical reconstruction on flow profiles in the aorta using magnetic resonance blood tagging. Ann. Thorac. Surg. 63, 1691–1700

    Article  PubMed  CAS  Google Scholar 

  17. Frazin L. J., G. Lanza, M. Vonesh, F. Khasho, C. Spitzzeri, S. McGee, D. Mehlman, K. B. Chandran, J. Talano, D. McPherson. (1990) Functional chiral asymmetry in descending thoracic aorta. Circulation 82(6), 1985–1994

    PubMed  CAS  Google Scholar 

  18. Frydrychowicz A., R. Arnold, A. Harloff, C. Schlensak, J. Hennig, M. Langer, M. Markl. (2008) Images in cardiovascular medicine. In vivo 3-dimensional flow connectivity mapping after extracardiac total cavopulmonary connection. Circulation 118(2):e16–17

    Article  PubMed  Google Scholar 

  19. Frydrychowicz A., R. Arnold, D. Hirtler, C. Schlensak, A. F. Stalder, J. Hennig, M. Langer, M. Markl. (2008) Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation. J. Cardiovasc. Magn. Reson., 8–10(1):30

    Article  PubMed  Google Scholar 

  20. Frydrychowicz A., A. Berger, M. F. Russe, A. F. Stalder, A. Harloff, S. Dittrich, J. Hennig, M. Langer, M. Markl. (2008) Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis. J. Thorac. Cardiovasc. Surg. 136(2):400–407

    Article  PubMed  Google Scholar 

  21. Frydrychowicz A., A. Harloff, B. Jung, M. Zaitsev, E. Weigang, T. A. Bley, M. Langer, J. Hennig, M. Markl. (2007) Time-resolved, 3-dimensional magnetic resonance flow analysis at 3 T: visualization of normal and pathological aortic vascular haemodynamics. J. Comput. Assist. Tomogr. 31(1), 9–15

    Article  PubMed  Google Scholar 

  22. Frydrychowicz A., E. Weigang, A. Harloff, F. Beyersdorf, J. Hennig, M. Langer, M. Markl. (2006) Images in cardiovascular medicine. Time-resolved 3-dimensional magnetic resonance velocity mapping at 3 T reveals drastic changes in flow patterns in a partially thrombosed aortic arch. Circulation 113(11), e460–e461

    Article  PubMed  Google Scholar 

  23. Frydrychowicz A., E. Weigang, M. Langer, M. Markl. (2006) Flow-sensitive 3D magnetic resonance imaging reveals complex blood flow alterations in aortic Dacron graft repair. Interact. Cardiovasc. Thorac. Surg. 5(4), 340–342

    Article  PubMed  Google Scholar 

  24. Gharib M., E. Rambod, A. Kheradvar, D. J. Sahn, J. O. Dabiri. (2006) Optimal vortex formation as an index of cardiac health. PNAS 103(16), 6305–6308

    Article  PubMed  CAS  Google Scholar 

  25. Grigioni M., C. Daniele, U. Morbiducci, C. Del Gaudio, G. D’Avenio, A. Balducci, V. Barbaro. (2005) A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending. J. Biomech. 38(7), 1375–1386

    Article  PubMed  Google Scholar 

  26. Hope T. A., M. Markl, L. Wigstrom, M. T. Alley, D. C. Miller, R. J. Herfkens. (2007) Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J. Magn. Reson. Imaging 26(6), 1471–1479

    Article  PubMed  Google Scholar 

  27. Kilner P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, D. B. Longmore. (1993) Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88(5 Pt 1), 2235–2247

    PubMed  CAS  Google Scholar 

  28. Kilner P. J., G. Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, M. H. Yacoub. (2000) Asymmetric redirection of flow through the heart. Nature 404, 759–761

    Article  PubMed  CAS  Google Scholar 

  29. Ley S., J. Ley-Zaporozhan, K. F. Kreitner, S. Iliyushenko, M. Puderbach, W. Hosch, H. Wenz, J. P. Schenk, H. U. Kauczor. (2007) MR flow measurements for assessment of the pulmonary, systemic and bronchosystemic circulation: impact of different ECG gating methods and breathing schema. Eur. J. Radiol. 61, 124–129

    Article  PubMed  Google Scholar 

  30. Liepsch D. W. (1986) Flow in tubes and arteries—a comparison. Biorheology 23(4):395–433

    PubMed  CAS  Google Scholar 

  31. Liepsch D. W. (2002) An introduction to biofluid mechanics—basic models and applications. J. Biomech. 35(4), 415–435

    Article  PubMed  Google Scholar 

  32. Markl M., M. T. Draney, M. D. Hope, J. M. Levin, F. P. Chan, M. T. Alley, N. J. Pelc, R. J. Herfkens. (2004) Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J. Comput. Assist. Tomogr. 28(4), 459–468

    Article  PubMed  Google Scholar 

  33. Markl M., M. T. Draney, D. C. Miller, J. M. Levin, E. E. Williamson, N. J. Pelc, D. H. Liang, R. J. Herfkens. (2005) Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J. Thorac. Cardiovasc. Surg. 130(2), 456–463

    Article  PubMed  Google Scholar 

  34. Markl M., A. Harloff, D. Föll, M. Langer, J. Hennig, A. Frydrychowicz. (2007) Sclerotic aortic valve: flow-sensitive 4-dimensional magnetic resonance imaging reveals 3 distinct flow-pattern changes. Circulation 116(10), e336–337

    Article  PubMed  Google Scholar 

  35. Moffatt H. K. (1969) The degree of knottedness of tangled vortex lines. J. Fluid Mech. 36(I):17–29

    Google Scholar 

  36. Moffatt H. K., A. Tsinober. (1992) Helicity in laminar and turbulent flow, Ann. Rev. Fluid Mech. 24, 281–312

    Article  Google Scholar 

  37. Morbiducci U., M. Lemma, R. Ponzini, A. Boi, L. Bondavalli, C. Antona, F. M. Montevecchi, A. Redaelli. (2007) Does flow dynamics of the magnetic vascular coupling for distal anastomosis in coronary artery bypass grafting contribute to the risk of graft failure? Int. J. Artif. Organs 30(7), 628–639

    PubMed  CAS  Google Scholar 

  38. Morbiducci U., R. Ponzini, M. Grigioni, A. Redaelli. (2007) Helical flow as fluid dynamic signature for atherogenesis in aortocoronary bypass. A numeric study. J. Biomech. 40(3), 519–534

    Article  PubMed  Google Scholar 

  39. Pedley T. J. (1980) The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge

    Google Scholar 

  40. Pelc N. J., R. J. Herfkens, A. Shimakawa, D. R. Enzmann. (1991) Phase contrast cine magnetic resonance imaging. Magn. Reson. Q 7(4), 229–254

    Article  PubMed  CAS  Google Scholar 

  41. Seed W. A., N. B. Wood. (1971) Velocity patterns in the aorta Cardiovasc. Res. 5:319–330

    Article  PubMed  CAS  Google Scholar 

  42. Segadal L., K. Matre. (1987) Blood velocity distribution in the human ascending aorta. Circulation 36, 90–100

    Google Scholar 

  43. Steinman D. A. (2000) Simulated pathline visualization of computed periodic blood flow patterns. J. Biomech. 33(5), 623–628

    Article  PubMed  CAS  Google Scholar 

  44. Steinman D. A., C. A. Taylor. (2005) Flow imaging and computing: large artery hemodynamics. Ann. Biomed. Eng. 33(12), 1704–1709

    Article  PubMed  Google Scholar 

  45. Stonebridge P. A., Brophy C. M. (1991) Spiral laminar flow in arteries? Lancet 338(8779), 1360–1361

    Article  PubMed  CAS  Google Scholar 

  46. Stonebridge P. A., P. R. Hoskins, P. L. Allan, J. F. Belch. (1996) Spiral laminar flow in vivo. Clin. Sci. (Lond.) 91(1), 17–21

    CAS  Google Scholar 

  47. Taylor C. A., C. P. Cheng, L. A. Espinosa, B. T. Tang, D. Parker, R. J. Herfkens. (2002) In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Ann. Biomed. Eng. 30(8), 402–408

    Article  PubMed  Google Scholar 

  48. Tsinober A., E. Levich. (1983) On the helical nature of three dimensional coherent structures in turbulent flows. Phys. Lett. 99A, 321–323

    Article  Google Scholar 

  49. Weigang E., F. A. Kari, F. Beyersdorf, M. Luehr, C. D. Etz, A. Frydrychowicz, A. Harloff, M. Markl. (2008) Flow-sensitive four-dimensional magnetic resonance imaging: flow patterns in ascending aortic aneurysms. Eur. J. Cardiothorac. Surg. 34(1), 11–16

    Article  PubMed  Google Scholar 

  50. Wigström L., T. Ebbers, A. Fyrenius, M. Karlsson, J. Engvall, B. Wranne, A. F. Bolger. (1999) Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magn. Reson. Med. 41(4), 793–799

    Article  PubMed  Google Scholar 

  51. Yashiro K., H. Shiratori, H. Hamada. (2007) Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450(7167), 285–288

    Article  PubMed  CAS  Google Scholar 

  52. Yearwood T. L., K. B. Chandran (1980) Experimental investigation of steady flow through a model of the human aortic arch. J. Biomech. 13(12), 1075–1088

    Article  PubMed  CAS  Google Scholar 

  53. Yearwood T. L., K. B. Chandran. (1982) Physiological pulsatile flow experiments in a model of the human aortic arch. J. Biomech. 15(9), 683–704.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Morbiducci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morbiducci, U., Ponzini, R., Rizzo, G. et al. In Vivo Quantification of Helical Blood Flow in Human Aorta by Time-Resolved Three-Dimensional Cine Phase Contrast Magnetic Resonance Imaging. Ann Biomed Eng 37, 516–531 (2009). https://doi.org/10.1007/s10439-008-9609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9609-6

Keywords

Navigation