Skip to main content
Log in

The Power Law of Sensory Adaptation: Simulation by a Model of Excitability in Spider Mechanoreceptor Neurons

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The power law of sensory adaptation was introduced more than 50 years ago. It is characterized by action potential adaptation that follows fractional powers of time or frequency, rather than exponential decays and corresponding frequency responses. Power law adaptation describes the responses of a range of vertebrate and invertebrate sensory receptors to deterministic stimuli, such as steps or sinusoids, and to random (white noise) stimulation. Hypotheses about the physical basis of power law adaptation have existed since its discovery. Its cause remains enigmatic, but the site of power law adaptation has been located in the conversion of receptor potentials into action potentials in some preparations. Here, we used pseudorandom noise stimulation and direct spectral estimation to show that simulations containing only two voltage activated currents can reproduce the power law adaptation in two types of spider mechanoreceptors. Identical simulations were previously used to explain the different responses of these two types of sensory neurons to step inputs. We conclude that power law adaptation results during action potential encoding by nonlinear combination of a small number of activation and inactivation processes with different exponential time constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Barth F. G., Ein einzelnes Spaltsinnesorgan auf dem Spinnentarsus: seine Erregung in Abhängigkeit von den Parametern des Luftschallreizes. Z. Vergl. Physiol. 55: 407–449, 1971

    Article  Google Scholar 

  2. Bendat J. S., A. G. Piersol, Engineering Applications of Correlation, Spectral Analysis. New York: John Wiley & Sons, 1980. pp. 1–302

    Google Scholar 

  3. Biederman-Thorson M., J. Thorson, Dynamics of excitation and inhibition in the light-adapted Limulus Eye in situ. J. Gen. Physiol. 58: 1–19, 1971

    Article  PubMed  CAS  Google Scholar 

  4. Bohnenberger J., Matched transfer characteristics of single units in a compound slit sense organ. J. Comp. Physiol. 142: 391–402, 1981

    Article  Google Scholar 

  5. Brown M. C., R. B. Stein, Quantitative studies on the slowly adapting stretch receptor of the crayfish. Kybernetik 3: 175–185, 1966

    Article  PubMed  CAS  Google Scholar 

  6. Chapman K. M., R. S. Smith, A linear transfer function underlying impulse frequency modulation in a cockroach mechanoreceptor. Nature 197: 699–700, 1963

    Article  Google Scholar 

  7. Cooley J. W., J. W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19: 297–301, 1965

    Article  Google Scholar 

  8. Destexhe A., J. R. Huguenard, Nonlinear thermodynamic models of voltage-dependent currents. J. Comput. Neurosci. 9: 259–270, 2000

    Article  PubMed  CAS  Google Scholar 

  9. French A. S., Dynamic properties of the action potential encoder in an insect mechanosensory neuron. Biophys. J. 46: 285–289, 1984

    PubMed  CAS  Google Scholar 

  10. French A. S., The receptor potential and adaptation in the cockroach tactile spine. J. Neurosci. 4: 2063–2068, 1984

    PubMed  CAS  Google Scholar 

  11. French A. S., A. V. Holden, Alias-free sampling of neuronal spike trains. Kybernetik 8: 165–171, 1971

    Article  PubMed  CAS  Google Scholar 

  12. French A. S., A. V. Holden, R. B. Stein, The estimation of the frequency response function of a mechanoreceptor. Kybernetik 11: 15–23, 1972

    Article  PubMed  CAS  Google Scholar 

  13. French A. S., U. Höger, S. Sekizawa, P. H. Torkkeli, Frequency response functions and information capacities of paired spider mechanoreceptor neurons. Biol. Cybern. 85: 293–300, 2001

    Article  PubMed  CAS  Google Scholar 

  14. French A. S., I. Panek, P. H. Torkkeli, Shunting versus inactivation: simulation of GABAergic inhibition in spider mechanoreceptors suggests that either is sufficient. Neurosci. Res. 55: 189–196, 2006

    Article  PubMed  CAS  Google Scholar 

  15. French A. S., P. H. Torkkeli, The time course of sensory adaptation in the cockroach tactile spine. Neurosci. Lett. 178: 147–150, 1994

    Article  PubMed  CAS  Google Scholar 

  16. Gilboa G., R. Chen, N. Brenner, History-dependent multiple-time-scale dynamics in a single-neuron model. J. Neurosci. 25: 6479–6489, 2005

    Article  PubMed  CAS  Google Scholar 

  17. Gingl E., A. S. French, Active signal conduction through the sensory dendrite of a spider mechanoreceptor neuron. J. Neurosci. 23: 6096–6101, 2003

    PubMed  CAS  Google Scholar 

  18. Gingl E., A. S. French, I. Panek, S. Meisner, P. H. Torkkeli, Dendritic excitability and localization of GABA-mediated inhibition in spider mechanoreceptor neurons. Eur. J. Neurosci. 20: 59–65, 2004

    Article  PubMed  Google Scholar 

  19. Hodgkin A. L., A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117: 500–544, 1952

    PubMed  CAS  Google Scholar 

  20. Johnston D., S. M. S. Wu, Foundations of Cellular Neurophysiology. Cambridge, MA: MIT Press, 1995. pp. 1–676

    Google Scholar 

  21. Juusola M., A. S. French, The efficiency of sensory information coding by mechanoreceptor neurons. Neuron 18: 959–968, 1997

    Article  PubMed  CAS  Google Scholar 

  22. Landgren S., On the excitation mechanism of the carotid baroreceptors. Acta Physiol. Scand. 26: 1–34, 1952

    Article  PubMed  CAS  Google Scholar 

  23. Liebovitch L. S., J. Fischbarg, J. P. Koniarek, Ion channel kinetics: a model based on fractal scaling rather than multistate markov processes. Math. Biosci. 84: 37–68, 1987

    Article  Google Scholar 

  24. Looft F. J., Linear systems analysis of cutaneous type I mechanoreceptors. IEEE Trans. Biomed. Eng. 37: 565–573, 1990

    Article  PubMed  CAS  Google Scholar 

  25. Looft F. J., Response of monkey glabrous skin mechanoreceptors to random-noise sequences: III. spectral analysis. Somatosens. Mot. Res. 13: 235–244, 1996

    Article  PubMed  CAS  Google Scholar 

  26. MacGregor R. J., Neural and Brain Modeling. San Diego, CA: Academic Press, 1987. pp. 1–643

    Google Scholar 

  27. Millhauser G. L., E. E. Salpeter, R. E. Oswald, Diffusion models of ion-channel gating and the origin of power-law distributions from single-channel recording. Proc. Natl. Acad. Sci. USA 85: 1503–1507, 1988

    Article  PubMed  CAS  Google Scholar 

  28. Sekizawa S.-i., A. S. French, U. Höger, P. H. Torkkeli, Voltage-activated potassium outward currents in two types of spider mechanoreceptor neurons. J. Neurophysiol. 81: 2937–2944, 1999

    PubMed  CAS  Google Scholar 

  29. Sekizawa S.-i., A. S. French, P. H. Torkkeli, Low-voltage-activated calcium current does not regulate the firing behavior in paired mechanosensory neurons with different adaptation properties. J. Neurophysiol. 83: 746–753, 2000

    PubMed  CAS  Google Scholar 

  30. Shannon C. E., W. Weaver, The Mathematical Theory of Communication. Urbana, Chicago and London: University of Illinois Press, 1949. pp. 1–117

    Google Scholar 

  31. Strout J., Conical: the computational neuroscience class library. Proc. 18th Annu. Conf. Cogn. Sci. Soc. 18:849, 1996.

  32. Thorson J., M. Biederman-Thorson, Distributed relaxation processes in sensory adaptation. Science 183: 161–172, 1974

    Article  PubMed  CAS  Google Scholar 

  33. Toib A., V. Lyakhov, S. Marom, Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na+ channels. J. Neurosci. 18: 1893–1903, 1998

    PubMed  CAS  Google Scholar 

  34. Torkkeli P. H., A. S. French, Simulation of different firing patterns in paired spider mechanoreceptor neurons: the role of Na+ channel inactivation. J. Neurophysiol. 87: 1363–1368, 2002

    PubMed  CAS  Google Scholar 

  35. Torkkeli P. H., S. Sekizawa, A. S. French, Inactivation of voltage-activated Na+ currents contributes to different adaptation properties of paired mechanosensory neurons. J. Neurophysiol. 85: 1595–1602, 2001

    PubMed  CAS  Google Scholar 

  36. Warland D. D., M. A. Landolfa, J. P. Miller, W. Bialek. Reading between the spikes in the cercal filiform hair receptors of the cricket. In: Analysis and Modeling of Neural Systems. edited by Eckman F., Kluwer Academic, Boston 1992, pp. 327–333

    Google Scholar 

  37. Watts R. E., A. S. French, Sensory transduction in dorsal cutaneous mechanoreceptors of the frog, Rana pipiens. J. Comp. Physiol. A 157: 657–665, 1985

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported by grants from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. French.

Rights and permissions

Reprints and permissions

About this article

Cite this article

French, A.S., Torkkeli, P.H. The Power Law of Sensory Adaptation: Simulation by a Model of Excitability in Spider Mechanoreceptor Neurons. Ann Biomed Eng 36, 153–161 (2008). https://doi.org/10.1007/s10439-007-9392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9392-9

Keywords

Navigation