Skip to main content
Log in

Biphasic Finite Element Model of Solute Transport for Direct Infusion into Nervous Tissue

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Infusion-based techniques are promising drug delivery methods for treating diseases of the nervous system. Direct infusion into tissue parenchyma circumvents the blood–brain barrier, localizes delivery, and facilitates transport of macromolecular agents. Computational models that predict interstitial flow and solute transport may aid in protocol design and optimization. We have developed a biphasic finite element (FE) model that accounts for local, flow-induced tissue swelling around an infusion cavity. It solves for interstitial fluid flow, tissue deformation, and solute transport in surrounding isotropic gray matter. FE solutions for pressure-controlled infusion were validated by comparing with analytical solutions. The influence of deformation-dependent hydraulic permeability was considered. A transient, nonlinear relationship between infusion pressure and infusion rate was determined. The sensitivity of convection-dominated solute transport (i.e., albumin) over a range of nervous tissue properties was also simulated. Solute transport was found to be sensitive to pressure-induced swelling effects mainly in regions adjacent to the infusion cavity (r/a 0 ≤ 5 where a 0 is the outer cannula radius) for short times infusion simulated (3 min). Overall, the biphasic approach predicted enhanced macromolecular transport for small volume infusions (e.g., 2 μL over 1 h). Solute transport was enhanced by decreasing Young’s modulus and increasing hydraulic permeability of the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

FE:

Finite element

CED:

Convection-enhanced delivery

CSF:

Cerebrospinal fluid

a :

Radius of infusion cavity

c :

Solute concentration in tissue

D eff :

Effective diffusivity of solute in tissue

e :

Volume dilatation \((=Tr(\varvec{\upvarepsilon}))\)

E :

Young’s modulus

H A :

Aggregate modulus (= λ + 2μ)

k :

Hydraulic permeability

M :

Material constant for deformation-dependent hydraulic permeability

p :

Pore (interstitial) fluid pressure

t 0 :

Ramping time of load

u :

Displacement vector

v :

Volume-averaged bulk velocity

v c :

Solute velocity

v f :

Intrinsic fluid velocity

v s :

Solid velocity

χ:

Retardation coefficient

\(\varvec{\upvarepsilon}\) :

Infinitesimal deformation tensor

ϕf :

Volume fraction of fluid phase; Porosity

ϕs :

Volume fraction of solid phase

λ:

Lamé elastic constant of solid phase

μ:

Shear modulus of solid phase

ν:

Poisson ratio

\(\varvec{\upsigma}^{E}\) :

Contact stress tensor

\(\varvec{\upsigma}^{f}\) :

Cauchy stress tensor of fluid phase

\(\varvec{\upsigma}^{s}\) :

Cauchy stress tensor of solid phase

References

  1. Barry S. I., Aldis G. K. (1992) Flow-induced deformation from pressurized cavities in absorbing porous tissues. Bull. Math. Biol. 54(6):977–997

    PubMed  CAS  Google Scholar 

  2. Basser P. J. (1992) Interstitial pressure, volume, and flow during infusion into brain tissue. Microvasc. Res. 44(2):143–165

    Article  PubMed  CAS  Google Scholar 

  3. Bobo R. H., Laske D. W., Akbasak A., Morrison P. F., Dedrick R. L., Oldfield E. H. (1994) Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. 91(6): 2076–2080

    Article  PubMed  CAS  Google Scholar 

  4. Bradbury M. (1979) The Concept of a Blood-Brain Barrier. New York, Wiley

    Google Scholar 

  5. Chen M. Y., Lonser R. R., Morrison P. F., Governale L. S., Oldfield E. H. (1999) Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J. Neurosurg. 90(2):315–320

    PubMed  CAS  Google Scholar 

  6. Chen Z.-J., Broaddus W. C., Viswanathan R. R., Raghavan R., Gillies G. T. (2002) Intraparenchymal drug delivery via positive-pressure infusion: experimental and modeling studies of poroelasticity in brain phantom gels.IEEE Trans. Biomed. Eng. 49(2):85–96

    Article  PubMed  Google Scholar 

  7. Dykstra K. H., Hsiao J. K., Morrison P. F., Bungay P. M., Mefford I. N., Scully M. M., Dedrick R. L. (1992) Quantitative examination of tissue concentration profiles associated with microdialysis. J. Neurochem. 58:931–940

    Article  PubMed  CAS  Google Scholar 

  8. Ferguson S. J., Ito K., Nolte L. P. (2004) Fluid flow and convective transport of solutes within the intervertebral disk. J. Biomech. 37:213–221

    Article  PubMed  Google Scholar 

  9. Gu W. Y., Yao H., Huang C. Y., Cheung H. S. (2003) New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J. Biomech 36(4): 593–598

    Article  PubMed  CAS  Google Scholar 

  10. Gurbanova A. A., Aker R., Berkman K., Onat F. Y., van Rijn C. M., van Luijtelaar G. (2006) Effect of systemic and intracortical administration of phenytoin in two genetic models of absence epilepsy. Br. J. Pharmacol 148(8):1076–1082

    Article  PubMed  CAS  Google Scholar 

  11. Holmes M. H., Mow V. C. (1990) The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech 23(11):1145–1156

    Article  PubMed  CAS  Google Scholar 

  12. Hou J. S., Holmes M. H., Lai W. M., Mow V. C. (1989) Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. J. Biomech. Eng. 111(1):78–87

    PubMed  CAS  Google Scholar 

  13. Johnson E. M., Deen W. M. (1996) Hydraulic permeability of agarose gels. AIChE J 42(5):1220–1224

    Article  CAS  Google Scholar 

  14. Johnston S. T., Deen W. M. (1999) Hindered convection of proteins in agarose gels. J. Membr. Sci. 153(2):271–279

    Article  CAS  Google Scholar 

  15. Kaczmarek M., Subramaniam R. P., Neff S. R. (1997) The hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometry. Bull. Math. Biol 59(2): 295–323

    Article  PubMed  CAS  Google Scholar 

  16. Kenyon D. E. (1979) Transient filtration in a porous elastic cylinder. ASME Trans. Series E, J. Appl. Mech. 43(4): 594–598

    Google Scholar 

  17. Kenyon D. E. (1979) A mathematical model of water flux through aortic tissue. Bull. Math. Biol 41(1):79–90

    PubMed  CAS  Google Scholar 

  18. Lai W. M., Mow V. C. (1980) Drag-induced compression of articular cartilage during a permeation experiment. Biorheology. 17(1–2):111–123

    PubMed  CAS  Google Scholar 

  19. Laske D. W., Morrison P. F., Lieberman D. M., Corthesy M. E., Reynolds J. C., StewartHenney P. A., Koong S. S., Cummins A., Paik C. H., Oldfield E. H. (1997) Chronic interstitial infusion of protein to primate brain: determination of drug distribution and clearance with single-photon emission computerized tomography imaging. J. Neurosurg. 87(4):586–594

    PubMed  CAS  Google Scholar 

  20. Lieberman D. M., Laske D. W., Morrison P. F., Bankiewicz K. S., Oldfield E. H. (1995) Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J. Neurosurg. 82(6):1021–1029

    PubMed  CAS  Google Scholar 

  21. Lonser R. R., Weil R. J., Morrison P. F., Governale L. S., Oldfield E. H. (1998) Direct convective delivery of macromolecules to peripheral nerves. J. Neurosurg. 89(4): 610–615

    PubMed  CAS  Google Scholar 

  22. Lonser, R. R., S. Walbridge, K. Garmestani, J. A. Butman, H. A. Walters, A. O. Vortmeyer, P. F. Morrison, M. W. Brechbiel, and E. H. Oldfield. Successful and safe perfusion of the primate brainstem: in vivo magnetic resonance imaging of macromolecular distribution during infusion. J. Neurosurg. 97(4):905–913, 2002

    PubMed  Google Scholar 

  23. Mauck R. L., Hung C. T., Ateshian G. A. (2003) Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J. Biomech. Eng 125(5): 602–614

    Article  PubMed  Google Scholar 

  24. McGuire S., Zaharoff D., Yuan F. (2006) Nonlinear dependence of hydraulic conductivity on tissue deformation during intratumoral infusion. Ann. Biomed. Eng. 34(7):1173–1181

    Article  PubMed  Google Scholar 

  25. Metz H., McElhaney J., Ommaya A. K. (1970) A comparison of the elasticity of live, dead, and fixed brain tissue. J. Biomech. 3(4):453–458

    Article  PubMed  CAS  Google Scholar 

  26. Miller K., Chinzei K. (1997) Constitutive modelling of brain tissue: Experiment and theory. J. Biomech 30(11–12):1115–1121

    Article  PubMed  CAS  Google Scholar 

  27. Morrison P. F., Chen M. Y., Chadwick R. S., Lonser R. R., Oldfield E. H. (1999) Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics. Am. J. Physiol 277(4, Part 2): R1218-R1229

    PubMed  CAS  Google Scholar 

  28. Morrison P. F., Laske D. W., Bobo H., Oldfield E. H., Dedrick R. L. (1994) High-flow microinfusion: tissue penetration and pharmacodynamics. Am. J. Physiol 266(1):R292-R305

    PubMed  CAS  Google Scholar 

  29. Mostachfi O., Drake J. M., Tenti G., Sivaloganathan S. (1996) Realistic simple mathematical model of brain biomechanics for computer simulation of hydrocephalus and other brain abnormalities. Can J Neurol Sci 23 (Suppl. 1):S33

    Google Scholar 

  30. Mow V. C., Kuei S. C., Lai W. M., Armstrong C. G. (1980) Biphasic creep and stress-relaxation of articular-cartilage in compression – theory and experiments. J. Biomech. Eng. 102(1):73–84

    PubMed  CAS  Google Scholar 

  31. Mow V. C., Holmes M. H., Lai W. M. (1984) Fluid transport and mechanical-properties of articular-cartilage – a review. J. Biomech. 17(5):377–394

    Article  PubMed  CAS  Google Scholar 

  32. Neeves K. B., Lo C. T., Foley C. P., Saltzman W. M., Olbricht W. L. (2006). Fabrication and characterization of microfluidic probes for convection enhanced drug delivery. J. Control Release 111(3):252–262

    Article  CAS  Google Scholar 

  33. Netti P. A., Travascio F., Jain R. K. (2003). Coupled Macromolecular Transport and Gel Mechanics: Poroviscoelastic Approach. AIChE J. –Bioengineering, Food, and Products 49(6):1580–1596

    CAS  Google Scholar 

  34. Nicholson C., Sykova E. (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21: 207–215

    Article  PubMed  CAS  Google Scholar 

  35. Oomens C. W. J., van Campen D. H., Grootenboer H. J. (1987) A mixture approach to the mechanics of skin. J. Biomech 20:877–885

    Article  PubMed  CAS  Google Scholar 

  36. Pardridge W. M. (1995) Transport of small molecules through the blood-brain barrier: biology and methodology. Adv. Drug Deliv. Rev 15:5–36

    Article  CAS  Google Scholar 

  37. Parker K. H., Mehta R. V., Caro C. G. (1987) Steady flow in porous, elastically deformable materials. ASME Trans. J. Appl. Mech 54(4):794–800

    Article  Google Scholar 

  38. Prabhu S. S., Broaddus W. C., Gillies G. T., Loudon W. G., Chen, Z., Smith B. (1998) Distribution of macromolecular dyes in brain using positive pressure infusion: A model for direct controlled delivery of therapeutic agents. Surg. Neurol 50:367–375

    Article  PubMed  CAS  Google Scholar 

  39. Reulen H. J., Graham R., Spatz M., Klatzo I. (1977) Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J. Neurosurg 46:24–35

    Article  PubMed  CAS  Google Scholar 

  40. Sarntinoranont M., Banerjee R. K., Lonser R. R., Morrison P. F. (2003) A computational model of direct interstitial infusion of macromolecules into the spinal cord. Ann. Biomed. Eng. 31(4):448–461

    Article  PubMed  Google Scholar 

  41. Sarntinoranont M., Chen X. M., Zhao J. B., and Mareci T. H. (2006) Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann. Biomed. Eng. 34(8):1304–1321

    Article  PubMed  Google Scholar 

  42. Sengers B. G., Oomens C. W. J., Baaijens F. P. T. (2004) An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering. J. Biomech. Eng. 126(1):82–91

    Article  PubMed  Google Scholar 

  43. Simon B. R., Kaufman M. V., Liu J., Baldwin A. L. (1998) Porohyperelastic-transport-swelling theory, material properties and finite element models for large arteries. Int. J. Solids Struct. 35(34–35):5021–5031

    Article  Google Scholar 

  44. Spilker R. L., Suh J. K., Mow V. C. (1992) A Finite-Element Analysis of the indentation stress-relaxation response of linear biphasic articular-cartilage. J. Biomech. Eng. 114(2):191–201

    PubMed  CAS  Google Scholar 

  45. Sugihara-Seki M., Fu B. M. M. (2005) Blood flow and permeability in microvessels. Fluid Dyn. Res. 37(1–2):82–132

    Article  Google Scholar 

  46. Tao L., Nicholson C. (1996) Diffusion of albumins in rat cortical slices and relevance to volume transmission. Neuroscience 75(3):839–847

    Article  PubMed  CAS  Google Scholar 

  47. Walsh E. K., Schettini A. (1976) Elastic behavior of brain-tissue in vivo. Am. J. Physiol. 230(4):1058–1062

    PubMed  CAS  Google Scholar 

  48. Wood J. D., Lonser R. R., Gogate N., Morrison P. F., Oldfield E. H. (1999) Convective delivery of macromolecules into the naive and traumatized spinal cords of rats. J. Neurosurg. 90(1): 115–120

    PubMed  CAS  Google Scholar 

  49. Yao H., Gu W. Y. (2004) Physical signals and solute transport in cartilage under dynamic unconfined compression: Finite element analysis. Ann. Biomed. Eng. 32(3): 380–390

    Article  PubMed  Google Scholar 

  50. Zhang X. Y., Luck J., Dewhirst M. W., Yuan F. (2000) Interstitial hydraulic conductivity in a fibrosarcoma. Am. J. Physiol.-Heart Circ. Physiol. 279(6):H2726-H2734

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by a grant from the National Institutes of Health (R21 NS052670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malisa Sarntinoranont.

Appendix

Appendix

Analytical infusion solutions for constant pressure and constant hydraulic permeability were used for our biphasic FE validation analysis. We solved for tissue displacement for pressure-controlled infusion using the solutions for pore pressure and fluid velocity determined by Basser2

$$ p(r,t)=\frac{p_{0}a}{r}\left[1-\hbox{erf}\left(\frac{r-a}{\sqrt{4\omega t}}\right)\right] $$
(A.1)
$$ v^{f}(r,t)=k\cdot\frac{p_0 a}{r^{2}}\cdot \left \{\frac{1-\phi^{f}}{\phi^{f}}\left[\hbox{erfc}\left(\frac{r-a} {\sqrt{4\omega t}}\right)+\frac{r}{\sqrt{\pi\omega t}}\exp\left(\frac{-(r-a)^{2}}{4\omega t}\right)\right]+\left(1+\frac{a}{\sqrt{\pi\omega t}}\right)\right\} $$
(A.2)

where p 0 is the constant infusion pressure, a is the radius of the infusion cavity (constant), and ω = k· H A . The Laplace transform of the radial displacement, u(r, t), was given by2

$$ u(z,s)=\frac{1}{z^{2}}\cdot \left[\frac{p_0 a^{3}}{4\omega\mu}+\frac{B(s)}{\omega}-C(s)\cdot(1+z)\cdot e^{-z}\right]\quad \left(z=r\xi, \ \xi=\sqrt{\frac{s}{\omega}}\right) $$
(A.3)

where B(s) and C(s) are unknown functions and can be determined by using the zero contact stress boundary condition, \(\varvec{\upsigma}^{E}={\mathbf{0}}\) at r = a, + ∞, and the solution of p(r,t), respectively. These were calculated to be

$$ \frac{B(s)}{\omega}=\frac{p_0 a}{H_A}\cdot\frac{1}{s}+\frac{p_0 a^{2}}{H_A \sqrt{\omega}}\cdot\frac{1}{\sqrt{s}}\quad\hbox{and}\quad C(s)=\frac{p_0 a}{H_A}\cdot\frac{1}{s}\cdot e^{a\sqrt{\frac{s}{\omega}}} $$
(A.4)

Substituting Eq. (A.4) into Eq. (A.3) results in

$$ u(r,s)=\frac{p_0 a^{3}}{4\mu}\frac{1}{r^{2}}\cdot\frac{1}{s}+\frac{p_0 a\omega}{H_A}\frac{1}{r^{2}}\cdot\frac{1}{s^{2}}+\frac{p_0 a^{2}\sqrt{\omega}}{H_A}\frac{1}{r^{2}}\cdot\frac{1}{\sqrt{s^{3}}} -\frac{p_0 a\omega}{H_A}\frac{1}{r^{2}}\cdot\frac{1}{s^{2}}e^{-\frac{r-a} {\sqrt{\omega}}\sqrt{s}}-\frac{p_0 a\sqrt{\omega}}{H_A}\frac{1}{r}\cdot \frac{1}{\sqrt{s^{3}}}e^{-\frac{r-a}{\sqrt{\omega}}\sqrt{s}} $$
(A.5)

Taking the inverse Laplace transform provides the solution for displacement (Fig. 2)

$$ u(r,t)=\frac{p_0 a}{H_A}\frac{1}{r^{2}}\left[\frac{H_A a^{2}}{4\mu}+a\sqrt{\frac{4\omega t}{\pi}}+\omega t\cdot\hbox{erf}\left(\frac{r-a}{\sqrt{4\omega t}}\right)+\frac{r^{2}-a^{2}}{2}\hbox{erfc}\left(\frac{r-a}{\sqrt{4\omega t}}\right)-\sqrt{\frac{4\omega t}{\pi}}\frac{r+a}{2}e^{-\frac{(r-a)^{2}}{4\omega t}}\right] $$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Sarntinoranont, M. Biphasic Finite Element Model of Solute Transport for Direct Infusion into Nervous Tissue. Ann Biomed Eng 35, 2145–2158 (2007). https://doi.org/10.1007/s10439-007-9371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9371-1

Keywords

Navigation