Skip to main content
Log in

Finger Kinematic Modeling and Real-Time Hand Motion Estimation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper describes methods and experimental studies concerned with quantitative reconstruction of finger movements in real-time, by means of multi-camera system and 24 surface markers. The approach utilizes a kinematic model of the articulated hand which consists in a hierarchical chain of rigid body segments characterized by 22 functional degrees of freedom and the global roto-translation. This work is focused on the experimental evaluation of a kinematical hand model for biomechanical analysis purposes.

From a static posture, a completely automatic calibration procedure, based on anthropometric measures and geometric constraints, computes axes, and centers of rotations which are then utilized as the base of an interactive real-time animation of the hand model. The motion tracking, based on automatic marker labeling and predictive filter, is empowered by introducing constraints from functional finger postures. The validation is performed on four normal subjects through different right-handed motor tasks involving voluntary flexion-extension of the thumb, voluntary abduction–adduction of the thumb, grasping, and finger pointing. Performances are tested in terms of repeatability of angular profiles, model-based ability to predict marker trajectories and tracking success during real-time motion estimation. Results show intra-subject repeatability of the model calibration both to different postures and to re-marking in the range of 0.5 and 2 mm, respectively. Kinematic estimation proves satisfactory in terms of prediction capability (index finger: maximum RMSE 2.02 mm; thumb: maximum RMSE 3.25 mm) and motion reproducibility (R 2 coefficients—index finger: 0.96, thumb: 0.94). During fast grasping sequence (60 Hz), the percentage of residual marker occlusions is less than 1% and processing and visualization frequency of 50 Hz confirms the real-time capability of the motion estimation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. The palm rotation (2 DoFs) is determined by the two markers at MCP external surface of the index and middle fingers. Apart from the thumb, the rotation of the MCP (2 DoFs), PIP (1 DoF) and DIP (1 DoF) joints of the fingers are all computed by a single marker.

  2. Repeatability of the calibration was validated by analyzing the segmental lengths.

References

  1. An K. N., Chao E. Y., Cooney W. P. III, & Linscheid R.L., (1979). Normative model of human hand for biomechanical analysis. J. Biomech., 12, 775–788.

    Article  PubMed  CAS  Google Scholar 

  2. Biggs J., Horch K., (1999). A three-dimensional kinematic model of the human long finger and the muscles that actuate it. Med. Eng. Phys., 21, 625–639

    Article  PubMed  CAS  Google Scholar 

  3. Braido P., Zhang X., (2004). Quantitative analysis of finger motion coordination in hand manipulative and gestic acts. Human Movement Sci., 22, 661–678

    Article  Google Scholar 

  4. Buchholz B., Armstrong T. J., (1992). A kinematic model of the human hand to evaluate its prehensile capabilities. J. Biomech., 25, 149–162

    Article  PubMed  CAS  Google Scholar 

  5. Cerveri P., Lopomo N., Pedotti A., & Ferrigno G., (2005). Derivation of centers and axes of rotation for wrist and fingers in a hand kinematic model: robust methods and reliability results. Ann. Biomed. Eng., 33(3), 401–411

    Article  Google Scholar 

  6. Chèze L., Doriot N., Eckert M., Rumelhart C., & Comtet J. J., (2001). Étude cinématique in vivo de l’articulation Trapézométacarpienne. Chirurgie de la Main, 20, 23–30

    Article  PubMed  Google Scholar 

  7. Chiu, H. Y., Su F. C., Wang S. T., & Hsu H. Y., (1998). The motion analysis system and goniometry of the finger joints. J. Hand Surg., 23B, 788–791

    Google Scholar 

  8. Chiu, H. Y., Lin, S. C., Su, F. C., Wang, S. T., & Hsu, H. Y. (2000). The use of the motion analysis system for evaluation of loss of movement in the finger. J. Hand Surg., 25, 195–199

    CAS  Google Scholar 

  9. Coert J. H., van Dijke H. G., Hovius S. E., Snijders C. J., & Meek M. F., (2003). Quantifying thumb rotation during circumduction utilizing a video technique. J. Orthopedic Res., 21, 1151–1155

    Article  CAS  Google Scholar 

  10. Crisco, J. J., Chen, X., Panjabi, M. M., & Wolfe, S. W., (1994). Optimal marker placement for calculating the instantaneous center of rotation. J. Biomech. 27, 1183–1187

    Article  PubMed  Google Scholar 

  11. Häger-Ross C., Schieber M. H., (2000). Quantifying the independence of human finger movements: comparisons of digits, hands, and movement frequencies. J. Neurosci., 20(22), 8542–8550

    PubMed  Google Scholar 

  12. Hollister A., Buford W. L., Myers L. M., Giurintano D. J., & Novick A., (1992). The axes of rotation of the thumb carpometacarpal joint. J. Orthopaedic Res., 10, 454–460

    Article  CAS  Google Scholar 

  13. Hollister A., Giurintano D. J., Buford W. L., Myers L. M., & Novick A., (1995). The axes of rotation of the thumb interphalangeal and metacarpophalangeal joints. Clin. Orthopaed., 330, 188–193

    Google Scholar 

  14. Leonard L., Sirkett D., Mullineux G., Giddins G. E. B., & Miles A. W. (2005). Development of an in-vivo method of wrist joint motion analysis. Clin. Biomech., 20, 166–171

    Article  CAS  Google Scholar 

  15. Lin J., Y. Wu, and T. S. Huang, Modeling the constraints of human hand motion. Human Motion, 2000. Proceedings. Workshop on. 7–8 Dec., 121–126, 2000

  16. Kadaba M. P., Ramakrishnan H. K., Wootten M. E., Gainey J., Gorton G., Cochran C. V. B., (1989). Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthopaed. Res., 7, 849–860

    Article  CAS  Google Scholar 

  17. Kamper D. G., Cruz E. G., & Siegel M. P., (2003). Stereotypical Fingertip Trajectories During Grasp. J. Neurophys., 90, 3702–3710

    Article  CAS  Google Scholar 

  18. Kuo L.-C., Cooney W. P. III, Oyama M., Kaufman K. R., Su F.-C., & An K.-N., (2003). Feasibility of using surface markers for assessing motion of the thumb trapeziometacarpal joint. Clin. Biomech., 18, 558–563

    Article  Google Scholar 

  19. Kuo L.-C., Su F.-C., Chiu H.-Y., & Yu C.-Y., (2002). Feasibility of using a video-based motion analysis system for measuring thumb kinematics. J. Biomech., 35, 1499–1506.

    Article  PubMed  Google Scholar 

  20. Maravita A., Spence C., & Driver J. (2003) Multisensory integration and the body schema: close to hand and within reach. Curr. Biol., 13, 531–539, 2003

    Article  CAS  Google Scholar 

  21. Marin, F., H. Mannel, L. Claes, and L. Durselen. Accurate determination of a joint rotation center based on the minimal amplitude point method, Comp. Aided Surg. 8(1): 30–34, 2003

    Article  Google Scholar 

  22. Mason C. R., Gomez J. E., Ebner T. J., (2001). Hand synergies during reach-to-grasp. J. Neurophysiol., 86(6), 2896–2910.

    PubMed  CAS  Google Scholar 

  23. Mason C. R., Theverapperuma L. S., Hendrix C. M., Ebner T. J., (2004). Monkey hand postural synergies during reach-to-grasp in the absence of vision of the hand and object. J. Neurophysiol., 91(6), 2826–2837

    Article  PubMed  Google Scholar 

  24. Mason C. R., Hendrix C. M., Ebner T. J., (2006). Purkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey. J. Neurophysiol., 95(1), 144–158.

    Article  PubMed  Google Scholar 

  25. Novak K. E., L. E. Miller, & Houk J. C., (2000) Kinematic properties of rapid hand movements in a knob turning task. Exp. Brain Res., 132, 419–433

    Article  PubMed  CAS  Google Scholar 

  26. Rash G. S., Belliappa P. P., Wachowiak M. P., Somia N. N., & Gupta A. (1999). A demonstration of the validity of a 3-D video motion analysis method for measuring finger flexion and extension. J. Biomech., 32, 1337–1341

    Article  PubMed  CAS  Google Scholar 

  27. Santos V. J., Valero-Cuevas F. J., (2006). Reported anatomical variability naturally leads to multimodal distributions of Denavit–Hartenberg parameters for the human thumb. IEEE Trans. Biomed. Eng., 53(2), 155–163

    Article  PubMed  Google Scholar 

  28. Schieber M. H., Santello M., (2004). Hand function: peripheral and central constraints on performance. J. Appl. Phys. 96, 2293–2300

    Article  Google Scholar 

  29. Small, C. F., Bryant, J. T., & Pichora, D. R., (1992). Rationalization of kinematic descriptors for three-dimensional hand and finger motion. J. Biomed. Eng. 14(2), 133–141

    Article  PubMed  CAS  Google Scholar 

  30. Somia, N., Rash, G. S., Wachowiak, M., & Gupta, A., (1998). The initiation and sequence of digital joint motion. A three dimensional motion analysis. J. Hand Surg., 23B, 792–795

    Google Scholar 

  31. Theverapperuma L.S., Hendrix C.M., Mason C.R., Ebner T.J., (2006). Finger movements during reach-to-grasp in the monkey: amplitude scaling of a temporal synergy. Exp. Brain Res. 169(4), 433–448

    Article  PubMed  Google Scholar 

  32. Valero-Cuevas F. J., Johanson M. E., & Towles J. D., (2003). Towards a realistic biomechanical model of the thumb: the choice of kinematics description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36, 1019–1030

    Article  PubMed  Google Scholar 

  33. Weiss A. P., Moore D. C., Infantolino C, Crisco J. J., Akelman E., McGovern R. D., (2004) Metacarpophalangeal joint mechanics after 3 different silicone arthroplasties. J. Hand Surg. 29(5), 796–803

    Article  Google Scholar 

  34. Wu G., van der Helm F. C. T., Veeger H. E. J., Makhsous M., Van Roy P., Anglin C., Nagels J., Karduna A. R., McQuade K., Wang X., Werner F. W., & Buchholz B. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J. Biomech., 32, 1337–1341.

    Google Scholar 

  35. Yasumuro Y., Chen Q., & Chihara K., (1999). Three-dimensional modelling of the human hand with motion constraints. Image Vision Comput., 17, 149–156

    Article  Google Scholar 

  36. Yoshida R., House H. O., Patterson R. M., Shah M. A., & Viegas S. F., (2003) Motion and morphology of the thumb metacarpophalangeal joint. J. Hand Surg., 28(5), 753–757

    Article  Google Scholar 

  37. Zhang X., Lee S. W., & Braido P., (2003). Determining finger segmental center of rotation in flexion-extension based on surface marker measurement. J. Biomech., 36, 1097–1102

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from Italian Spatial Agency (ASI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cerveri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerveri, P., De Momi, E., Lopomo, N. et al. Finger Kinematic Modeling and Real-Time Hand Motion Estimation. Ann Biomed Eng 35, 1989–2002 (2007). https://doi.org/10.1007/s10439-007-9364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9364-0

Keywords

Navigation