Skip to main content
Log in

Probabilistic Modeling of Knee Muscle Moment Arms: Effects of Methods, Origin–Insertion, and Kinematic Variability

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In musculoskeletal modeling, reliable estimates of muscle moment arms are an important step in accurately predicting muscle forces and joint moments. The degree of agreement between the two common methods of calculating moment arms—tendon excursion (TE) and geometric origin–insertion, is currently unknown for the muscles crossing the knee joint. Further, measured moment arm data are subject to variability in estimation of attachment sites as points from irregular surfaces on the bones, and due to differences in joint kinematics observed in vivo. Thus, the objectives of the present study were to compare moment arms of major muscles crossing the knee joint obtained from TE and geometric methods using a finite element-based lower extremity model, and to quantify the effects of potential muscle origin–insertion and tibiofemoral kinematic variability on the predicted moment arms using probabilistic methods. A semiconstrained, fixed bearing, posterior cruciate-retaining total knee arthroplasty was included due to available in vivo kinematic data. In this study, muscle origin and insertion locations and kinematic variables were represented as normal distributions with standard deviations of 5 mm for origin–insertion locations and up to 1.6 mm and 3.0° for the kinematic parameters. Agreement between the deterministic moment arm calculations from the two methods was excellent for the flexors, while differences in trends and magnitudes were observed for the extensor muscles. Model-predicted deterministic moment arms from both methods agreed reasonably with the experimental values from available literature. The uncertainty in input parameters resulted in substantial variability in predicted moment arms, with the size of 1–99% confidence interval being up to 41.3 and 35.8 mm for the TE and geometric methods, respectively. The sizeable range of moment arm predictions and associated excursions has the potential to affect a muscle’s operating range on the force–length curve, thus affecting joint moments. In this study, moment arm predictions were more dependent on muscle origin–insertion locations than the kinematic variables. The important parameters from the TE method were the origin and insertion locations in the sagittal plane, while the insertion location in the sagittal plane was the dominant parameter using the geometric method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. An K. N., B. M. Kwak, E. Y. Chao, B. F. Morrey 1984 Determination of muscle and joint forces: A new technique to solve the indeterminate problem. J. Biomech. Eng. 106:364–367

    Article  PubMed  CAS  Google Scholar 

  2. Arnold A. S., S. Salinas, D. J. Asakawa, S. L. Delp 2000 Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5:108–119

    Article  PubMed  CAS  Google Scholar 

  3. Blemker S. S., S. L. Delp 2006 Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models. J. Biomech. 39:1383–1391

    Article  PubMed  Google Scholar 

  4. Boyd S. K., J. L. Ronsky 1998 Instantaneous moment arm determination of the cat knee. J. Biomech. 31:279–283

    Article  PubMed  CAS  Google Scholar 

  5. Brand R. A., R. D. Crowninshield, C. E. Wittstock, D. R. Pedersen, C. R. Clark, F. M. van Krieken 1982 A model of lower extremity muscular anatomy. J. Biomech. Eng. 104:304–310

    PubMed  CAS  Google Scholar 

  6. Buford W. L. Jr., F. M. Ivey Jr., J. D. Malone, R. M. Patterson, G. L. Peare, D. K. Nguyen, A. A. Stewart 1997 Muscle balance at the knee—moment arms for the normal knee and the ACL-minus knee. IEEE Trans. Rehabil. Eng. 5:367–379

    Article  PubMed  Google Scholar 

  7. Burkholder T. J., R. L. Lieber 1998 Sarcomere number adaptation after retinaculum transection in adult mice. J. Exp. Biol. 201:309–316

    CAS  Google Scholar 

  8. della Croce U., A. Cappozzo, D. C. Kerrigan 1999 Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles. Med. Biol. Eng. Comput. 37:155–161

    Article  PubMed  CAS  Google Scholar 

  9. Delp, S. Surgery simulation: A computer-graphics system to analyze and design musculoskeletal reconstructions of the lower limb. PhD thesis, Stanford University, 1990

  10. Dennis, D. A., R. D. Komistek, M. R. Mahfouz, B. D. Haas, and J. B. Stiehl. Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin. Orthop. Relat. Res 416:37–57, 2003

    Article  PubMed  Google Scholar 

  11. Easley S. K., S. Pal, P. R. Tomaszewski, A. J. Petrella, P. J. Rullkoetter, P. J. Laz 2007 Finite element-based probabilistic analysis tool for orthopaedic applications. Comput. Methods Programs Biomed. 85:32–40

    Article  PubMed  Google Scholar 

  12. Gill H. S., J. J. O’Connor 1996 Biarticulating two-dimensional computer model of the human patellofemoral joint. Clin Biomech. 11:81–89

    Article  Google Scholar 

  13. Haldar A., S. Mahadevan 2000 Probability, Reliability and Statistical Methods in Engineering Design. Wiley & Sons, Inc., New York, NY

    Google Scholar 

  14. Halloran J. P., S. K. Easley, A. J. Petrella, P. J. Rullkoetter 2005 Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics. J. Biomech. Eng. 127:813–818

    Article  PubMed  Google Scholar 

  15. Herzog W., L. J. Read 1993 Lines of action and moment arms of the major force-carrying structures crossing the human knee joint. J. Anatomy 182:213–230

    Google Scholar 

  16. Hoy M. G., F. E. Zajac, M. E. Gordon 1990 A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment–angle relationship of musculotendon actuators at the hip, knee, and ankle. J. Biomech. 23:157–169

    Article  PubMed  CAS  Google Scholar 

  17. Hughes R. E., G. Niebur, J. Liu, K.-N An 1998 Comparison of two methods for computing abduction moment arms of the rotator cuff. J. Biomech. 31:157–160

    Article  PubMed  CAS  Google Scholar 

  18. Imran A., R. A. Huss, H. Holstein, J. J. O’Connor 2000 The variation in the orientations and moment arms of the knee extensor and flexor muscle tendons with increasing muscle force: a mathematical analysis. Proc. Inst. Mech. Eng. [H]. 214:277–286

    CAS  Google Scholar 

  19. Karlsson D., B. Peterson 1992 Towards a model for force predictions in the human shoulder. J. Biomech. 25:189–199

    Article  PubMed  CAS  Google Scholar 

  20. Kellis E., V. Baltzopoulos 1999 In vivo determination of the patella tendon and hamstrings moment arms in adult males using videofluoroscopy during submaximal knee extension and flexion. Clin. Biomech. 14:118–124

    Article  CAS  Google Scholar 

  21. Kepple T. M., A. S. Arnold, S. J. Stanhope, K. L. Siegel 1994 Assessment of a method to estimate muscle attachments from surface landmarks: a 3D computer graphics approach. J. Biomech. 27:365–371

    Article  PubMed  CAS  Google Scholar 

  22. Komistek, R. D., D. A. Dennis, and M. Mahfouz. In vivo fluoroscopic analysis of the normal human knee. Clin. Orthop. Relat. Res. 410:69–81, 2003

    Article  PubMed  Google Scholar 

  23. Krevolin J. L., M. G. Pandy, J. C. Pearce 2004 Moment arm of the patellar tendon in the human knee. J. Biomech. 37:785–788

    Article  PubMed  Google Scholar 

  24. Laz P. J., S. Pal, J. P. Halloran, A. J. Petrella, P. J. Rullkoetter 2006 Probabilistic finite element prediction of knee wear simulator mechanics. J. Biomech. 39:2303–2310

    Article  PubMed  Google Scholar 

  25. Maganaris C. N. 2004 Imaging-based estimates of moment arm length in intact human muscle-tendons. Eur. J. Appl. Physiol. 91:130–139

    Article  PubMed  Google Scholar 

  26. Murray W. M., T. S. Buchanan, S. L. Delp 2002 Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions. J. Biomech. 35:19–26

    Article  PubMed  Google Scholar 

  27. Murray W. M., S. L. Delp, T. S. Buchanan 1995 Variation of muscle moment arms with elbow and forearm position. J. Biomech. 28:513–525

    Article  PubMed  CAS  Google Scholar 

  28. Pal S., C. Hammill, P. Rullkoetter, M. Mahfouz, R. D. Komistek 2004 In vivo determination of tibiofemoral contact for subjects having PS and PCR TKA. Trans. ORS. 29:1380

    Google Scholar 

  29. Pandy M. G. 1999 Moment arm of a muscle force. In: J. O. Holloszy (ed) Exercise and Sport Sciences Reviews. Lippincott Williams & Wilkins, Philadelphia, PA, pp. 79–118

    Google Scholar 

  30. Smidt G. L. 1973 Biomechanical analysis of knee flexion and extension. J. Biomech. 6:79–92

    Article  PubMed  CAS  Google Scholar 

  31. Spoor C. W., J. L. van Leeuwen, W. J. van der Meulen, A. Huson 1991 Active force–length relationship of human lower-leg muscles estimated from morphological data: a comparison of geometric muscle models. Eur. J. Morphol. 29:137–160

    PubMed  CAS  Google Scholar 

  32. Tsaopoulos D. E., V. Baltzopoulos, C. N. Maganaris 2006 Human patellar tendon moment arm length: measurement considerations and clinical implications for joint loading assessment. Clin. Biomech. 21:657–667

    Article  Google Scholar 

  33. van der Helm F. C. T. 1994 A finite element musculoskeletal model of the shoulder mechanism. J. Biomech. 27:551–569

    Article  PubMed  Google Scholar 

  34. White S. C., H. J. Yack, D. A. Winter 1989 A three-dimensional musculoskeletal model for gait analysis. Anatomical variability estimates. J. Biomech. 22:885–893

    Article  PubMed  CAS  Google Scholar 

  35. Wilson D. L., Q. Zhu, J. L. Duerk, J. M. Mansour, K. Kilgore, P. E. Crago 1999 Estimation of tendon moment arms from three-dimensional magnetic resonance images. Ann. Biomed. Eng. 27:247–256

    Article  PubMed  CAS  Google Scholar 

  36. Woltring H. J., K. Long, P. J. Osterbauer, A. W. Fuhr 1994 Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics. J. Biomech. 27:1415–1432

    Article  PubMed  CAS  Google Scholar 

  37. Wu Y. T., H. R. Millwater, T. A. Cruse 1990 Advanced probabilistic structural-analysis method for implicit performance functions. Aiaa J. 28:1663–1669

    Article  Google Scholar 

  38. Yoshiya S., N. Matsui, R. D. Komistek, D. A. Dennis, M. Mahfouz, M. Kurosaka 2005 In vivo kinematic comparison of posterior cruciate-retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions. J. Arthroplasty 20:777–783

    Article  PubMed  Google Scholar 

  39. Yuen T. J., M. S. Orendurff 2006 A comparison of gastrocnemius muscle-tendon unit length during gait using anatomic, cadaveric and MRI models. Gait Posture. 23:112–117

    Article  PubMed  Google Scholar 

  40. Zajac F. E. 1989 Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported in part by DePuy, a Johnson & Johnson Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Langenderfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, S., Langenderfer, J.E., Stowe, J.Q. et al. Probabilistic Modeling of Knee Muscle Moment Arms: Effects of Methods, Origin–Insertion, and Kinematic Variability. Ann Biomed Eng 35, 1632–1642 (2007). https://doi.org/10.1007/s10439-007-9334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9334-6

Keywords

Navigation