Skip to main content
Log in

Models of Flow-Induced Loading on Blood Cells in Laminar and Turbulent Flow, with Application to Cardiovascular Device Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Viscous shear stress and Reynolds stress are often used to predict hemolysis and thrombosis due to flow-induced stress on blood elements in cardiovascular devices. These macroscopic stresses are distinct from the true stress on an individual cell, which is determined by the local microscale flow field. In this paper the flow-induced stress on blood cells is calculated for laminar and turbulent flow, using simplified models for cells and for turbulent eddies. The model is applied to estimate shear stress on red blood cells in flow through a prosthetic heart valve, using the energy spectral density measured by Liu et al. [J. Biomech. Eng. 122:118–124, 2000]. Results show that in laminar flow, the maximum stress on a cell is approximately equal to the macroscopic viscous shear stress. In turbulent flow through a prosthetic heart valve, the estimated root mean square of flow-induced stress on a cell is at least an order of magnitude less than the Reynolds stress. The results support the hypothesis that smaller turbulent eddies cause higher stress on cells. However, the stress due to an eddy depends on the velocity scale of the eddy as well as its length scale. For the heart valve flow investigated, turbulence contributes to flow-induced stress on cells almost equally across a broad range of the frequency spectrum. The model suggests that Reynolds stress alone is not an adequate predictor of cell damage in turbulent flow, and highlights the importance of the energy spectral density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

A,B :

functions of f

a :

cell radius

E :

energy spectral density

f :

frequency

K :

ratio of stress oscillation amplitude to velocity oscillation amplitude

L :

length scale

m :

mass

p :

pressure

r :

radial coordinate

Re :

Reynolds number

t :

time

u :

fluid velocity

\({\bar{u}}\) :

mean fluid velocity

u′:

fluid velocity fluctuation

v :

cell velocity

v′:

cell velocity relative to freestream

x i :

Cartesian coordinate

α:

phase angle

\({\dot{\gamma}}\) :

shear rate

η:

Kolmogorov length scale

θ:

azimuthal coordinate

μ:

dynamic viscosity

ρ:

density

σ:

stress

φ:

polar coordinate

0:

oscillation amplitude or characteristic scale

c:

cell

p:

plasma

rms:

root mean square

R:

Reynolds (stress)

v:

viscous (stress)

∞:

freestream

References

  1. Bacher R. P., Williams M. C. (1970) Hemolysis in capillary flow. J. Lab. Clin. Med. 76:485–496

    PubMed  CAS  Google Scholar 

  2. Bachmann C., Hugo G., Rosenberg G., Deutsch S., Fontaine A., Tarbell J.M. (2000) Fluid dynamics of a pediatric ventricular assist device. Artif. Organs 24:362–372

    Article  PubMed  CAS  Google Scholar 

  3. Bradshaw P. (1971) An Introduction to Turbulence and its Measurement. Pergamon Press, Oxford

    Google Scholar 

  4. Davidson P. (2004) A Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, Oxford

    Google Scholar 

  5. Day S. W., McDaniel J. C., Wood H. G., Allaire P. E., Song X., Lemire P. P., Miles S. D. (2002) A prototype heartquest ventricular assist device for particle image velocimetry measurements. Artif. Organs 26:1002–1005

    Article  PubMed  Google Scholar 

  6. Blackshear P. L. Dorman F. D., Steinbach J. H., Maybach E. J., Singh A., Collingham R. E. (1966) Shear wall interaction and hemolysis. Trans. Amer. Soc. Artif. Int. Organs 12:113–120

    Google Scholar 

  7. Ellis J. T., Wick T. M., Yoganathan A. P. (1998) Prosthesis-induced hemolysis: mechanisms and quantification of shear stress. J. Heart Valve Dis. 7:376–386

    PubMed  CAS  Google Scholar 

  8. Fischer T. M. (1978) The red cell as a fluid droplet: tank tread-Like motion of the human erythrocyte membrane in shear flow. Science 202:894–896

    Article  PubMed  CAS  Google Scholar 

  9. Forstrom, R. J. A new measure of erythrocyte membrane strength: the jet fragility test. Ph.D. Thesis, University of Minnesota, Minneapolis, 1969.

  10. Fung Y. C. (1993) Biomechanics: Mechanical Properties of Living Tissues. Springer, New York

    Google Scholar 

  11. Giersiepen M., Wurzinger L. J., Opitz R., Reul H. (1990) Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int. J Art. Organs 13:300–306

    CAS  Google Scholar 

  12. Gott V. L., Alejoa D. E., Cameron D. E. (2004) Mechanical heart valves: 50 years of evolution. Ann. Thorac. Surg. 76:S2230–S2239

    Article  Google Scholar 

  13. Grigioni M., Caprari P., Tarzia A., D’Avenio G. (2005) Prosthetic heart valves’ mechanical loading of red blood cells in patients with hereditary membrane defects. J. Biomech. 38:1557–1565

    Article  PubMed  Google Scholar 

  14. Hellums J. D., Brown C. H. (1977) Blood cell damage by mechanical forces. In: Hwang N. H. C., Normann N. A. (eds) Cardiovascular Flow Dynamics and Measurements. University Park Press, Baltimore

    Google Scholar 

  15. Heuser G., Opitz R. (1980) A coutte viscometer for short time shearing of blood. Biorheology 17:17–24

    PubMed  CAS  Google Scholar 

  16. Jones S. A. (1995) A relationship between Reynolds stresses and viscous dissipation: implications to red cell damage. Ann. Biomed. Eng. 23:21–28

    Article  PubMed  CAS  Google Scholar 

  17. Kameneva M. V., Burgreen G. W., Kono K., Repko B., Antaki J. F., Umezu M. (2004) Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. Am. Soc. Artif. Intern. Organs J. 50:418–423

    Google Scholar 

  18. Landau L. D., Lifshitz E. M. (1959) Fluid Mechanics, First ed. Pergamon Press, Oxford

    Google Scholar 

  19. Leverett L. B., Hellums J. D., Alfrey C. P., Lynch E. C. (1972) Red blood cell damage by shear stress. Biophys. J. 12:257–273

    PubMed  CAS  Google Scholar 

  20. Liu J. S., Lu P. C., Chu S. H. (2000) Turbulence characteristics downstream of bileaflet aortic valve prostheses. J. Biomech. Eng. 122:118–124

    Article  PubMed  CAS  Google Scholar 

  21. Lu P. C., Lai H. C., Liu J. S. (2001) A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J. Biomech. 34:1361–1364

    Article  PubMed  CAS  Google Scholar 

  22. Mikeluncak D. R., Morris J. F. (2004) Stationary shear flow around fixed and free bodies at finite Reynolds number. J. Fluid Mech. 520:215–242

    Article  Google Scholar 

  23. Nevaril C. G., Lynch E. C., Alfrey C. P., Hellums J. D. (1968) Erythrocyte damage and destruction induced by shearing stress. J. Lab. Clin. Med. 71:784–790

    PubMed  CAS  Google Scholar 

  24. Niimi H., Sugihara M. (1985) Cyclic loading on the red cell membrane in a shear flow: a possible cause of hemolysis. J. Biomech. Eng. 107:91–95

    Article  PubMed  CAS  Google Scholar 

  25. Nobach H., Müller E., Tropea C. (1998) Efficient estimation of power spectral density from laser Doppler anemometer data. Exp. Fluid 24:499–509

    Article  Google Scholar 

  26. Paul R., Apel J., Klaus S., Schügner F., Schwindke P., Reul H. (2003) Shear stress related blood damage in laminar couette flow. Artif. Organs 27:517–529

    Article  PubMed  Google Scholar 

  27. Rooney J. A. (1970) Hemolysis near an ultrasonically pulsating gas bubble. Science 169:869–871

    Article  PubMed  CAS  Google Scholar 

  28. Sallam A. M., Hwang N. H. C. (1984) Human red blood cells in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology 21:783–797

    PubMed  CAS  Google Scholar 

  29. Sutera S. P., Joist J. H. (1992) Haematological effects of turbulent blood flow. In: Butchart E. C., Bodnar E. (eds) Thrombosis, Embolism and Bleeding. ICR Publishers, London

    Google Scholar 

  30. Sutera S. P., Mehrjardi M. H. (1975) Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys. J. 15:1–10

    Article  PubMed  CAS  Google Scholar 

  31. Tran-Son-Tay R., Sutera S. P., Zahalak G. I., Rao P. R. (1987) Membrane stress and internal pressure in a red blood cell freely suspended in a shear flow. Biophys. J. 51:915–924

    PubMed  CAS  Google Scholar 

  32. Travis B. R., Leo H. L., Shah P. A., Frakes D. H., Yoganathan A. P. (2002) An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses. J. Biomech. Eng. 124:155–165

    Article  PubMed  Google Scholar 

  33. Williams A. R., Hughes D. E., Nyborg W. L. (1970) Hemolysis near a transversely oscillating wire. Science 169:871–873

    Article  PubMed  Google Scholar 

  34. Wurzinger L. J., Opitz R., Blasberg P., Schmid-Schoübein H. (1985) Platelet and coagulation parameters following millisecond exposure to laminar shear stress. Thromb. Haemost. 54:381–386

    PubMed  CAS  Google Scholar 

  35. Wurzinger L. J., Opitz R., Eckstein H. (1986) Mechanical bloodtrauma. An overview. Angéiologie 38:81–97

    Google Scholar 

  36. Yin W., Alemu Y., Affeld K., Jesty J., Bluestein D. (2004) Flow induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann. Biomed. Eng. 32:1058–1066

    Article  PubMed  Google Scholar 

  37. Yoganathan A. P., He Z., Casey Jones S. (2004) Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6:331–362

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Patrick N. Dooley gratefully acknowledges the support of the Irish Research Council for Science, Engineering and Technology, funded by the National Development Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan J. Quinlan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinlan, N.J., Dooley, P.N. Models of Flow-Induced Loading on Blood Cells in Laminar and Turbulent Flow, with Application to Cardiovascular Device Flow. Ann Biomed Eng 35, 1347–1356 (2007). https://doi.org/10.1007/s10439-007-9308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9308-8

Keywords

Navigation