Skip to main content
Log in

Design Considerations for an Implantable, Muscle Powered Piezoelectric System for Generating Electrical Power

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A totally implantable piezoelectric generator system able to harness power from electrically activated muscle would augment the power systems of implanted functional electrical stimulation devices by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The generator design contains no moving parts and uses a portion of the generated power for system operation. A software model of the system was developed and simulations performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces were experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to 690 μW of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 46 μW. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. Araki K., T. Nakatani, K. Toda, Y. Taenaka, E. Tatsumi, T. Masuzawa, Y. Baba, A. Yagura, Y. Wakisaka, and K. Eya et al Power of the fatigue resistant in situ latissimus dorsi muscle. Asaio J. 41:M768–771, 1995

    Article  PubMed  CAS  Google Scholar 

  2. Badylak S., M. Hinds, and L. Geddes Comparison of three methods of electrical stimulation for converting skeletal muscle to a fatigue resistant power source suitable for cardiac assistance Ann. Biomed. Eng. 18:239–250, 1990

    Article  PubMed  CAS  Google Scholar 

  3. Bhadra N., K. L. Kilgore, and P. H. Peckham. Implanted stimulators for restoration of function in spinal cord injury Med. Eng. Phys. 23:19–28, 2001

    Article  PubMed  CAS  Google Scholar 

  4. Cobbold R. S Transducers for Biomedical Measurments: Principles and Applications. John Wiley & Sons, Inc., New York, NY, 1974, p. 486

    Google Scholar 

  5. Deharo J. C., and P. Djiane. Pacemaker longevity. Replacement of the device Ann. Cardiol. Angeiol. (Paris). 54:26–31, 2005.

    CAS  Google Scholar 

  6. Elvin N., A. A. Elvin, and M. Spector A self-powered mechanical strain energy sensor Smart Mater. Struct. 10:293–299, 2001

    Article  Google Scholar 

  7. Fukunaga T., R. R. Roy, F. G. Shellock, J. A. Hodgson, M. K. Day, P. L. Lee, H. Kwong-Fu, and V. R. Edgerton Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging J. Orthop. Res. 10:928–934, 1992

    Article  PubMed  CAS  Google Scholar 

  8. Gonzalez J. L., A. Rubio, and F. Moll Human powered piezoelectric bateries to supply power to wearable electronic devices Int. J. Soc. Mater. Eng. Resourc. 10:34–40, 2002

    Google Scholar 

  9. Gustafson, K. J., S. M. Marinache, G. D. Egrie, and S. H. Reichenbach. Models of Metabolic Utilization Predict Limiting Conditions for Sustained Power from Conditioned Skeletal Muscle. Ann. Biomed. Eng. 34:790–798, 2006

    Article  PubMed  Google Scholar 

  10. Guyton A. C., and J. E. Hall Textbook of Medical Physiology. Philadelphia, PA:Elsevier/Saunders, p. 968, 2000

    Google Scholar 

  11. Hausler, E. and L. Stein. “Implantable physiological power supply with PVDF film.” In: Medical Applications of Piezoelectric Polymers, edited by P. M. Galletti, D. E. De Rossi and A. S. De Reggi, Gordon and Breach Science Publishers, New York, NY, 1988, pp. 259–264

  12. Keith M. W., P. H. Peckham, G. B. Thrope, K. C. Stroh, B. Smith, J. R. Buckett, K. L. Kilgore, and J. W. Jatich Implantable functional neuromuscular stimulation in the tetraplegic hand J. Hand. Surg. [Am]. 14:524–530, 1989

    Article  CAS  Google Scholar 

  13. Ko, W. H. Piezoelectric energy converter for electronic implants. 19th Annual Conference of the Society for Engineering in Medicine and Biology. 67 pp. 1966

  14. Ko, W. H. “Power sources for implant telemetry and stimulation systems.” In: A Handbook on Biotelemetry and Radio Tracking, edited by C. J. Amlaner, and D. MacDonald. Pergamon Press, Inc., Elmsford, NY, 1980, pp. 225–245

  15. Marras W. S., M. J. Jorgensen, K. P. Granata, and B. Wiand Female and male trunk geometry: Size and prediction of the spine loading trunk muscles derived from MRI Clin. Biomech. (Bristol, Avon). 16:38–46, 2001

    Article  CAS  Google Scholar 

  16. Maurel, W. 3D Modeling of the human upper limb including the biomechanics of joints, muscles and soft tissues. (Ph.D. diss., Ecole Polytechnique Federale de Lausanne, 1998)

  17. Mizuhara H., T. Oda, T. Koshiji, T. Ikeda, K. Nishimura, S. Nomoto, K. Matsuda, N. Tsutsui, K. Kanda, and T. Ban A compressive type skeletal muscle pump as a biomechanical energy source Asaio J. 42:M637–M641, 1996

    Article  PubMed  CAS  Google Scholar 

  18. Ottman G. K., H. F. Hofmann, and G. A. Lesieutre Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode IEEE Trans. Power Electron. 18:696–703, 2003

    Article  Google Scholar 

  19. Ozeki T., T. Chinzei, Y. Abe, I. Saito, T. Isoyama, S. Mochizuki, M. Ishimaru, K. Takiura, A. Baba, T. Toyama, and K. Imachi Functions for detecting malposition of transcutaneous energy transmission coils ASAIO J. 49:469–474, 2003

    PubMed  Google Scholar 

  20. Pierrynowski, M. R. “Analytic representation of muscle line of action and geometry.” In: Three-Dimensional Analysis of Human Movement, edited by P. Allard, I. A. F. Stokes, and J.-P. Blanchi. Human Kinetics, Champaign, IL, 1995, pp. 215–256

  21. Puers R., and G. Vandevoorde. Recent progress on transcutaneous energy transfer for total artificial heart systems Artif. Organs. 25:400–405, 2001

    Article  PubMed  CAS  Google Scholar 

  22. Trumble D. R., W. A. LaFramboise, C. Duan, and J. A. Magovern. Functional properties of conditioned skeletal muscle: implications for muscle-powered cardiac assist. Am. J. Physiol. 273:C588–597, 1997

    PubMed  CAS  Google Scholar 

  23. Trumble D. R., D. B. Melvin, and J. A. Magovern. Method for anchoring biomedical implants to muscle tendon and chest wall Asaio J. 48:62–70, 2002

    Article  PubMed  Google Scholar 

  24. Wenzel, B. Closed-loop electrical control of urinary continence. (Ph.D. diss., Case Western Reserve University, 2005)

  25. Wong L. S. Y., S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas. A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid-State Circuit. 39:2446–2456, 2004

    Article  Google Scholar 

Download references

Acknowledgements

This project is funded by NASA Glenn Research Center’s Alternate Energy Foundational Technologies Project, which is part of the NASA Vehicle System Program of the Aeronautics Research Enterprise, NIH HD40298 and The State of Ohio BRTT 03–10. The NASA Glenn Research Center’s Mechanics and Lifing Branch of the Structures Division is acknowledged for their generous support of this project by conducting the mechanical test in their Fatigue Lab. William Brown (Sierra Lobo) is particularly recognized for conducting the mechanical tests. Katie Hallahan (Case Western Reserve University Biomedical Engineering student) is acknowledged for her contribution to the design of the mechanical holder and to the experimental design of the mechanical tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Gustafson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewandowski, B.E., Kilgore, K.L. & Gustafson, K.J. Design Considerations for an Implantable, Muscle Powered Piezoelectric System for Generating Electrical Power. Ann Biomed Eng 35, 631–641 (2007). https://doi.org/10.1007/s10439-007-9261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9261-6

Keywords

Navigation