Skip to main content
Log in

IL-8 Response of Cyclically Stretching Alveolar Epithelial Cells Exposed to Non-fibrous Particles

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Using a cell stretcher device, we have previously shown that A549 cells exposed to asbestos fibers gave significantly increased cytokine responses (IL-8) when they were cyclically stretched [Tsuda, A., B. K. Stringer, S. M. Mijailovich, R. A. Rogers, K. Hamada, and M. L. Gray. Am. J. Respir. Cell Mol. Biol. 21(4):455–462, 1999]. In the present study, cell stretching experiments were performed using non-fibrous riebeckite particles, instead of fibrous particles. Riebeckite particles are ground asbestos fibers with the size of a few microns and non-fibrous shape, and are often used as “non-toxic” control particles in the studies of fibrous particle-induced pathogenesis. Although it is generally assumed that riebeckite particles do not elicit strong biological responses, in our studies in cyclically stretched cell cultures, the riebeckite particles coated with adhesion proteins induced significant IL-8 responses, but in static cell cultures the treatment with adhesion protein-coated riebeckite did not induce comparable cytokine responses. To interpret these data, we have developed a simple mathematical model of adhesive interactions between a cell layer and rigid fibrous/non-fibrous particles that were subjected to external tensile forces. The analysis showed that because of considerable dissimilarity in deformations (i.e., strain mismatch) between the cells and particles during breathing, the attachment of particles as small as 1 μ in size could induce significant mechanical forces on the cell surface receptors, which may trigger subsequent adverse cell response under dynamic stretching conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

Notes

  1. We did not include the experiments with uncoated particles for the following reasons. (i) There is serum in the cell culture fluid and it is most likely that particles will be coated with serum in the culture fluid during the six hour experiment. It would be difficult to distinguish the effects of the particles coated before the experiments versus coated during the experiment. (ii) From our previous study, it is very likely that positively charged surface characteristics of reibekite (ground asbestos)44,45 quickly adsorb fibronectin, which is abundantly present in alveolar lining fluids.29,46 In reality, reibekite particles are likely to be quickly coated once they land on the alveolar surface, and therefore, we think that the use of coated particles is more realistic.

  2. There are data indicating that A549 cells have sufficient receptor expression, such as integrins α v β 3 and α 3β 1,16,29,48 to bind particles. In particular, Trepet et al.63,64 recently demonstrated that 4.6 μm beads coated with fibronectin will adhere to surface molecules of A549 cells. Regarding interreceptor spacing, there is no direct measurement for A549 cells. However, Trepet et al. also demonstrated that fibronectin-coated beads stay firmly attached during magnetic twisting. If one considers that the strains imposed by bead twisting are similar to strains imposed by cell stretching in our experiment, it is not unreasonable to indirectly conclude that A549 cells have sufficient receptor expression (i.e., receptor density) to cause multi-site binding of a single riebeckite particle.

  3. An analogy of this is that a band-aid is usually peeled off from its edges if one stretches the skin around it.

  4. At this moment it is unclear whether f max for ɛo = 5% is above or below breaking force of receptor–ligand bonds. We believe that our calculated f max has right order of magnitude. The maximum receptor force at the tips of the particle (dashed line in Fig. 4), calculated from parameters denoted in the figure’s legend, is comparable to the receptor force calculated from the measured traction at different focal adhesions on the interface between live cells and elastic substrates (of ∼5.5 nN/μm2 2) divided by receptor–ligand bond density (of 100/μm2), i.e., \({\bar {f}_{\rm fa} = 5.5\times10^{3}/400 = 13.75\,\hbox{pN}}. \)

  5. Strain of 5% corresponds to an increase in the cell surface area by about 10%, and this is roughly matching the degree of alveolar expansion during quiet breathing where tidal volume is approximately 15% of Functional Residual Capacity. Many experimental data show that during normal breathing the lungs expand and contract in a manner roughly consistent with geometric similarity (i.e., the shape of the expanding structure unchanged). In other words, the lungs expand uniformly; it is also presumed that the principal mode of strain distribution is uniform throughout the lung.

  6. In this analysis, we treat the cell as a one-dimensional extensible stress-bearing element.

  7. Interfacial forces are generated by the population of stretched and compressed receptor–ligand complexes, and the sum of the nanoscale receptor forces is indeed the source of macroscale traction between cell and particle.51,53

  8. We lumped effects of all receptors in neighborhood of x and represent them by an average strained bond uniformly distributed at location x with receptor–ligand density,n r. Although it is well known that the receptor–ligand bond density can change significantly depending on the conditions of adhesion processes (e.g., under transient or dynamic loading conditions), in this study, we used n r =  100/μm2 as the best estimate based on the recent reports in the literature (Table 1). Rationale for this simplification is based on our mathematical analysis on the dynamics of receptor–ligand binding.79 We found that whereas the bond density changes appreciably over a stretching cycle in the case of longer particle lengths, it changes only modestly in the case of shorter particle lengths. Because we are considering short particles (riebeckite), the assumption that the bond density remains approximately constant over the stretching cycle is believed to be reasonable.

Abbreviations

ELISA:

Enzyme-linked immunosorbent assay

IL:

Interleukin

RGD:

Arginine–glycine–aspartic acid

BM:

Basement membrane

μm:

micrometer

pN:

pico Newton

References

  1. Arya, M., Lopez, J. A., Romo, G. M., Cruz, M. A., Kasirer-Friede, A., Shattil, S. J., Anvari, B. (2003) Glycoprotein Ib-IX-mediated activation of integrin alpha(IIb)beta(3): Effects of receptor clustering and von Willebrand factor adhesion. J. Thromb. Haemost. 1(6):1150–1157

    Article  PubMed  CAS  Google Scholar 

  2. Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., Geiger, B. (2001). Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3(5):466–472

    Article  PubMed  CAS  Google Scholar 

  3. Banes, A. J., Tsuzaki, M., Yamamoto, J., Fischer, T., Brigman, B., Brown, T., Miller, L. (1995) Mechanoreception at the cellular level: The detection, interpretation, and diversity of responses to mechanical signals. Biochem. Cell Biol. 73(7–8):349–65

    Article  PubMed  CAS  Google Scholar 

  4. Bathe, K. J. Finite Element Procedures. Prentice-Hall, Englewood Cliffs, NJ, 1996

    Google Scholar 

  5. Bell, G. I. (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627

    Article  PubMed  CAS  Google Scholar 

  6. Bell, G. I., Dembo, M., Bongrand, P. (1984) Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys. J. 45(6):1051–1064

    PubMed  CAS  Google Scholar 

  7. Boylan, A. M., Sanan, D. A., Sheppard, D., Broaddus, V. C. (1995) Vitronectin enhances internalization of crocidolite asbestos by rabbit pleural mesothelial cells via the integrin alpha v beta 5. J. Clin. Invest. 96(4):1987–2001

    PubMed  CAS  Google Scholar 

  8. Broaddus, V. C., Yang, L., Scavo, L. M., Ernst, J. D., Boylan, A. M. (1996) Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J. Clin. Invest. 98(8):2050–2059

    Article  PubMed  CAS  Google Scholar 

  9. Brody, A. R., Hill, L. H., Adkins, B., Jr., O’Connor, R. W. (1981) Chrysotile asbestos inhalation in rats: Deposition pattern and reaction of alveolar epithelium and pulmonary macrophages. Am. Rev. Respir. Dis. 123(6):670–679

    PubMed  CAS  Google Scholar 

  10. Cavanaugh, K. J., Jr., Margulies, S. S. (2002) Measurement of stretch-induced loss of alveolar epithelial barrier integrity with a novel in vitro method. Am. J. Physiol. Cell Physiol. 283(6):C1801–1808

    PubMed  CAS  Google Scholar 

  11. Chang, K. C., Hammer, D. A. (1999) The forward rate of binding of surface-tethered reactants: Effect of relative motion between two surfaces. Biophys. J. 76(3):1280–1292

    PubMed  CAS  Google Scholar 

  12. Chen, J., Fabry, B., Schiffrin, E. L., Wang, N. (2001) Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am. J. Physiol. Cell Physiol. 280(6):C1475–C1484

    PubMed  CAS  Google Scholar 

  13. Chicurel, M. E., Singer, R. H., Meyer, C. J., Ingber, D. E. (1998) Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392(6677):730–733

    Article  PubMed  CAS  Google Scholar 

  14. Danilov Y.N., Juliano R.L. (1989) (Arg-Gly-Asp)n-albumin conjugates as a model substratum for integrin-mediated cell adhesion. Exp. Cell Res. 182(1):186–196

    Article  PubMed  CAS  Google Scholar 

  15. Dembo, M., Torney, D. C., Saxman, K., Hammer, D. (1988) The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. Roy. Soc. Lond. B Biol. Sci. 234(1274):55–83

    CAS  Google Scholar 

  16. Donaldson, K., Miller, B. G., Sara, E., Slight, J., Brown, R. C. (1993) Asbestos fibre length-dependent detachment injury to alveolar epithelial cells in vitro: Role of a fibronectin-binding receptor. Int. J. Exp. Pathol. 74(3):243–250

    PubMed  CAS  Google Scholar 

  17. Evans, E. (1999) Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy. Biophys. Chem. 82(2–3):83–97

    Article  PubMed  CAS  Google Scholar 

  18. Florin, E. L., Moy, V. T., Gaub, H. E. (1994) Adhesion forces between individual ligand–receptor pairs. Science 264(5157):415–417

    Article  PubMed  CAS  Google Scholar 

  19. Fredberg, J. J. (2000) Frozen objects: Small airways, big breaths, and asthma. J. Allergy Clin. Immunol. 106(4):615–624

    Article  PubMed  CAS  Google Scholar 

  20. Fredberg, J. J., Inouye, D., Miller, B., Nathan, M., Jafari, S., Raboudi, S. H., Butler, J. P., Shore, S. A. (1997) Airway smooth muscle, tidal stretches, and dynamically determined contractile states. Am. J. Respir. Crit. Care Med. 156(6):1752–1759

    PubMed  CAS  Google Scholar 

  21. Fuch, N. A. (1964) The Mechanics of Aerosols. Dover, New York, NY, 1964

    Google Scholar 

  22. Fukaya, H., Martin, C. J., Young, A. C., Katsura, S. (1968) Mechanial properties of alveolar walls. J. Appl. Physiol. 25(6):689–695

    PubMed  CAS  Google Scholar 

  23. Gajic, O., Lee, J., Doerr, C. H., Berrios, J. C., Myers, J. L., Hubmayr, R. D. (2003) Ventilator-induced cell wounding and repair in the intact lung. Am. J. Respir. Crit. Care Med. 167(7):1057–1063

    Article  PubMed  Google Scholar 

  24. Hansen, K., Mossman, B. T. (1987) Generation of superoxide (O2-.) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res. 47(6):1681–1686

    PubMed  CAS  Google Scholar 

  25. Harris, R. (2002) Stoking Ground Zero health worries. Curr. Biol. 12(4):R122

    Article  PubMed  CAS  Google Scholar 

  26. Hu, S., Chen, J., Butler, J. P., Wang, N. (2005) Prestress mediates force propagation into the nucleus. Biochem. Biophys. Res. Commun. 329(2):423–428

    Article  PubMed  CAS  Google Scholar 

  27. Hubmayr, R. D., Schroeder, M. A. (2000) Cytoskeletal mechanics of rat type II alveolar epithelial cells in culture. Am. J. Respir. Crit. Care Med. 161(3):A162 (Abstr.), 2000

    Google Scholar 

  28. Hughes, J. M., Hoppin, F. G., Jr., Mead, J. (1972) Effect of lung inflation on bronchial length and diameter in excised lungs. J. Appl. Physiol. 32(1):25–35

    PubMed  CAS  Google Scholar 

  29. Hynes, R. O. (1990) Fibronectins. Springer Series in Molecular Biology. Springer-Verlag, New York, NY,1990

    Google Scholar 

  30. Ingber, D. E. (2003) Mechanobiology and diseases of mechanotransduction. Ann. Med. 35(7):564–577

    Article  PubMed  Google Scholar 

  31. Ingram, R. H., Jr. (1995). Relationships among airway-parenchymal interactions, lung responsiveness, and inflammation in asthma. Giles F. Filley Lecture. Chest 107(3 Suppl):148S–152S

    PubMed  Google Scholar 

  32. Irvine, D. J., Hue, K. A., Mayes, A. M., Griffith, L. G. (2002) Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands. Biophys. J. 82(1 Pt 1):120–132

    PubMed  CAS  Google Scholar 

  33. Janssen, Y. M., Heintz, N. H., Marsh, J. P., Borm, P. J., Mossman, B. T. (1994) Induction of c-fos and c-jun proto-oncogenes in target cells of the lung and pleura by carcinogenic fibers. Am. J. Respir. Cell Mol. Biol. 11(5):522–530

    PubMed  CAS  Google Scholar 

  34. Jones, G. E., Arumugham, R. G., Tanzer, M. L. (1986) Fibronectin glycosylation modulates fibroblast adhesion and spreading. J. Cell Biol. 103(5):1663–1670

    Article  PubMed  CAS  Google Scholar 

  35. Kadiiska, M. B., Mason, R. P., Dreher, K. L., Costa, D. L., Ghio, A. J. (1997) In vivo evidence of free radical formation in the rat lung after exposure to an emission source air pollution particle. Chem. Res. Toxicol. 10(10):1104–1108

    Article  PubMed  CAS  Google Scholar 

  36. Kamp, D. W., Dunne, M., Anderson, J. A., Weitzman, S. A., Dunn, M. M. (1990) Serum promotes asbestos-induced injury to human pulmonary epithelial cells. J. Lab. Clin. Med. 116(3):289–297

    PubMed  CAS  Google Scholar 

  37. Kotani, M., Kotani, T., Li, Z., Silbajoris, R., Piantadosi, C. A., Huang, Y. C. (2004) Reduced inspiratory flow attenuates IL-8 release and MAPK activation of lung overstretch. Eur. Respir. J. 24(2):238–246

    Article  PubMed  CAS  Google Scholar 

  38. Lauffenburger, D. A., Linderman, J. L. Receptors: Models for Binding, Trafficking, and Signaling. Oxford University Press, New York, 1993

    Google Scholar 

  39. Lehenkari, P. P., Horton, M. A. (1999) Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem. Biophys. Res. Commun. 259(3):645–650

    Article  PubMed  CAS  Google Scholar 

  40. Li, F., Redick, S. D., Erickson, H. P., Moy, V. T. (2003) Force measurements of the alpha5beta1 integrin-fibronectin interaction. Biophys. J. 84(2 Pt 1):1252–1262

    PubMed  CAS  Google Scholar 

  41. Li, R., Mitra, N., Gratkowski, H., Vilaire, G., Litvinov, R., Nagasami, C., Weisel, J. W., Lear, J. D., DeGrado, W. F., Bennett, J. S. (2003) Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations. Science 300(5620):795–798

    Article  PubMed  CAS  Google Scholar 

  42. Lian, F., Huang, N., Wang, B., Chen, H., Wu, L. (2002) Shear stress induces interleukin-8 mRNA expression and transcriptional activation in human vascular endothelial cells. Chin. Med. J. (Engl) 115(12):1838–1842

    Google Scholar 

  43. Libbus, B. L., Illenye, S. A., Craighead, J. E. (1989) Induction of DNA strand breaks in cultured rat embryo cells by crocidolite asbestos as assessed by nick translation. Cancer Res. 49(20):5713–5718

    PubMed  CAS  Google Scholar 

  44. Liddell, D., Miller, K. Mineral Fibers and Health. CRC Press, Boca Raton, FL, 1992

    Google Scholar 

  45. Light, W. G., Wei, E. T. (1977) Surface charge and asbestos toxicity. Nature 265(5594):537–539

    Article  PubMed  CAS  Google Scholar 

  46. Linder, J., Rennard, S. Bronchoalveolar Lavage. American Society of Clinical Pathologists Press, Chicago, IL, 1988

    Google Scholar 

  47. Litvinov, R. I., Shuman, H., Bennett, J. S., Weisel, J. W. (2002) Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc. Natl. Acad. Sci. USA 99(11):7426–7431

    Article  PubMed  CAS  Google Scholar 

  48. Majda, J. A., Gerner, E. W., Vanlandingham, B., Gehlsen, K. R., Cress, A. E. (1994) Heat shock-induced shedding of cell surface integrins in A549 human lung tumor cells in culture. Exp. Cell Res. 210(1):46–51

    Article  PubMed  CAS  Google Scholar 

  49. Massia, S. P., Hubbell, J. A. (1991) An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 114(5):1089–1100

    Article  PubMed  CAS  Google Scholar 

  50. Merkel, R., Nassoy, P., Leung, A., Ritchie, K., Evans, E. (1999) Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397(6714):50–53

    Article  PubMed  CAS  Google Scholar 

  51. Mijailovich, S., Tsuda, A. Dynamic interaction of receptor mediated fiber adhesion on alveolar epithelium in cyclic motion. Am. J. Respir. Crit. Care Med. 155(4, Part 2):A959, 1997

    Google Scholar 

  52. Mijailovich, S. M., Stamenovic, D., Fredberg, J. J. (1993) Toward a kinetic theory of connective tissue micromechanics. J. Appl. Physiol. 74(2):665–681

    PubMed  CAS  Google Scholar 

  53. Mijailovich, S. M., Fredberg, J. J., Butler, J. P. (1996) On the theory of muscle contraction: Filament extensibility and the development of isometric force and stiffness. Biophys. J. 71(3):1475–1484

    PubMed  CAS  Google Scholar 

  54. Morris, G. F., Brody, A. R. (1999) Stressing fibrogenesis in cell culture. Am. J. Respir. Cell Mol. Biol. 21(4):447–448

    PubMed  CAS  Google Scholar 

  55. Needham D., Nunn R.S. (1990) Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys. J. 58(4):997–1009

    PubMed  CAS  Google Scholar 

  56. Nolan, R. P., Langer, A. M., Wilson, R. (1999) A risk assessment for exposure to grunerite asbestos (amosite) in an iron ore mine. Proc. Natl. Acad. Sci. USA 96(7):3412–3419

    Article  PubMed  CAS  Google Scholar 

  57. Noppl-Simson, D. A., Needham, D. (1996) Avidin–biotin interactions at vesicle surfaces: Adsorption and binding, cross-bridge formation, and lateral interactions. Biophys. J. 70(3):1391–1401

    PubMed  CAS  Google Scholar 

  58. Quinlan, T. R., Marsh, J. P., Janssen, Y. M., Borm, P. A., Mossman, B. T. (1994) Oxygen radicals and asbestos-mediated disease. Environ. Health Perspect. 102(10):107–110

    Article  PubMed  Google Scholar 

  59. Schaffer, J. L., Rizen, M., L’Italien, G. J., Benbrahim, A., Megerman, J., Gerstenfeld, L. C., Gray, M. L. (1994) Device for the application of a dynamic biaxially uniform and isotropic strain to a flexible cell culture membrane. J. Orthop. Res. 12(5):709–719

    Article  PubMed  CAS  Google Scholar 

  60. Sokolnicoff, I. S. Mathematical Theory of Elasticity. Robert E. Kreiger Publishing Company, Inc., Malabar, FL, 1983

    Google Scholar 

  61. Stanton, M. F., Laynard, M., Tegeris, A., Miller, E., May, M., Kent, E. (1977) Carcinogenicity of fibrous glass: pleural response in the rat in relation to fiber dimension. J. Natl. Cancer Inst. 58(3):587–603

    PubMed  CAS  Google Scholar 

  62. Tees, D. F., Waugh, R. E., Hammer, D. A. (2001) A microcantilever device to assess the effect of force on the lifetime of selectin-carbohydrate bonds. Biophys. J. 80(2):668–682

    PubMed  CAS  Google Scholar 

  63. Trepat, X., Grabulosa, M., Puig, F., Maksym, G. N., Navajas, D., Farre, R. (2004) Viscoelasticity of human alveolar epithelial cells subjected to stretch. Am. J. Physiol. Lung Cell Mol. Physiol. 287(5):L1025–L1034

    Article  PubMed  CAS  Google Scholar 

  64. Trepat, X., Grabulosa, M., Buscemi, L., Rico, F., Farre, R., Navajas, D. (2005) Thrombin and histamine induce stiffening of alveolar epithelial cells. J. Appl. Physiol. 98(4):1567–1574

    Article  PubMed  CAS  Google Scholar 

  65. Tschumperlin, D. J., Margulies, S. S. (1998) Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. Am. J. Physiol. 275(6 Pt 1):L1173–L1183

    PubMed  CAS  Google Scholar 

  66. Tschumperlin, D. J., Margulies, S. S. (1999) Alveolar epithelial surface area–volume relationship in isolated rat lungs. J. Appl. Physiol. 86(6):2026–2033

    PubMed  CAS  Google Scholar 

  67. Tschumperlin, D. J., Fredberg, J. J., Drazen, J. M. Mechanotransduction via specific cell–matrix interactions in airway epithelial cells. Am. J. Respir. Crit. Care Med. 161(3):A259 (Abstr.), 2000

    Google Scholar 

  68. Tsuda, A., Stringer, B. K., Mijailovich, S. M., Rogers, R. A., Hamada, K, Gray, M. L. (1999) Alveolar cell stretching in the presence of fibrous particles induces interleukin-8 responses. Am. J. Respir. Cell Mol. Biol. 21(4):455–462

    PubMed  CAS  Google Scholar 

  69. Vallyathan, V., Shi, X. (1997) The role of oxygen free radicals in occupational and environmental lung diseases. Environ. Health Perspect. 105(Suppl 1):165–177

    Article  PubMed  CAS  Google Scholar 

  70. Vlahakis, N. E., Hubmayr, R. D. (2000) Invited review: Plasma membrane stress failure in alveolar epithelial cells. J. Appl. Physiol. 89(6):2490–2496; discussion 2497

    PubMed  CAS  Google Scholar 

  71. Vlahakis, N. E., Hubmayr, R. D. (2003) Response of alveolar cells to mechanical stress. Curr. Opin. Crit. Care 9(1):2–8

    Article  PubMed  Google Scholar 

  72. Vlahakis, N. E., Schroeder, M. A., Limper, A. H., Hubmayr, R. D. (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am. J. Physiol. 277(1 Pt 1):L167–L173

    PubMed  CAS  Google Scholar 

  73. Wang, N., Butler, J. P., Ingber, D. E. (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127

    Article  PubMed  CAS  Google Scholar 

  74. Ward, M. D., Hammer, D. A. (1993) A theoretical analysis for the effect of focal contact formation on cell–substrate attachment strength. Biophys. J. 64(3):936–959

    PubMed  CAS  Google Scholar 

  75. Ward, M. D., Dembo, M., Hammer, D. A. (1994) Kinetics of cell detachment: Peeling of discrete receptor clusters. Biophys. J. 67(6):2522–2534

    Article  PubMed  CAS  Google Scholar 

  76. Ward, M. D., Dembo, M., Hammer, D. A. (1995) Kinetics of cell detachment: Effect of ligand density. Ann. Biomed. Eng. 23(3):322–331

    PubMed  CAS  Google Scholar 

  77. Weibel E.R. (1980) Design and structure of human lung. In: Fishman A.P. (eds), Pulmonary Disease and Disorders. McGraw-Hill, New York, N.Y, pp 224–271

    Google Scholar 

  78. Wong, J. Y., Kuhl, T. L., Israelachvili, J. N., Mullah, N., Zalipsky, S. (1997) Direct measurement of a tethered ligand–receptor interaction potential. Science 275(5301):820–822

    Article  PubMed  CAS  Google Scholar 

  79. Woodworth, C. D., Mossman, B. T., Craighead, J. E. (1983) Induction of squamous metaplasia in organ cultures of hamster trachea by naturally occurring and synthetic fibers. Cancer Res. 43(10):4906–4912

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. B.T. Mossman, for providing us with riebeckite particles, Dr. V.C. Broaddus for initial discussions, Dr. G. Qin for performing a part of the ELISA, Dr. M.L.Gray for her support, Dr. Kojic and his PAK FE group for performing 3D finite element calculations, and Ms. A. Black for her excellent technical assistance. We also thank Dr. J.J. Fredberg, and Dr. D.J. Tschumperlin for critical reading of the manuscript and helpful suggestions. This study was supported by NIH HL33009 (JJF (J.J. Fredberg)), AR048776 (SMM), HL54885 (AT), HL70542 (AT), HL74022 (AT) and Johns Hopkins Center for Alternatives to Animal Testing Grant #2000009 (AT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tsuda.

Appendix A

Appendix A

The mathematical model described here was developed to demonstrate how mechanical force is generated at the interface between the cell and an adhering object, such as a particle.

Interfacial Micromechanics

Similar to the analysis of Dembo et al.,15 adhesion receptor molecules are treated as spring-like bridges (Fig. 3), namely, the receptor force, f recp (force generated by receptor) is taken to be linearly dependent on the stretch of receptor \({(\Delta \ell =\ell - \ell_{\rm o}}), \)

$$f_{\rm recp} =\kappa \Delta \ell$$
(1)

where κ (≈1 pN/nm74) represents the stiffness of the receptor, ℓo (≈15 nm74) and ℓ denotes unstretched and stretched receptor length, respectively.

We assume that, (1) the gap between the cell and particle remains constant, h (≈10 nm6), and (2) the unstrained receptor with length, ℓo, is generally tilted with the equilibrium angle, αo (Fig. 3). When the receptor angle α is larger than αo, the receptor is stretched \({(\Delta \ell > 0}), \) thus the receptor force f recp is positive. This indicates that cell and particle are pulling each other. If on the other hand, α < αo the receptor is compressed \({(\Delta \ell < 0}), \) thus the receptor force f recp is negative. This indicates that cell and particle are pushing apart each other.6

Cell–particle Macromechanics

Let the displacement of the cell (apical surface) at position x (the origin of the coordinate, x = 0, fixed at the center of the particle) be u(x,t) at time t (Fig. 3). The strain, ɛ(x,t), along the cell is given by the gradients of the displacement:

$$\varepsilon (x,t)=\partial u(x,t)/\partial x$$
(2)

In contrast, the strain and displacements in the particle are assumed to be equal to zero because the particle is almost rigid comparing to the soft cell.

Denoting the stiffness (force per unit strain) of the cell Footnote 6 as k cell, the tensile force in the cell, F cell, is obtained from the constitutive equation:

$$F_{\rm cell} (x,t)=k_{\rm cell} \varepsilon (x,t)$$
(3)

It is important to note that due to the presence of receptors that mediate the cell–particle adhesion, the tension and hence the strains along the cell (i.e., along x) are not uniform. Note that the tension may generally be a function of time t, but in the simplified analysis considered here, time is only considered as a parameter. The change in F cell from a position x to x + dx is equal to the force, which corresponds to the traction generated by the sum Footnote 7 of nanoscale receptor forces around position x per unit length, and is equal to τ (x,t)dx. Here τ denotes traction which has a dimensionality of force per unit length in one-dimensional case. The equilibrium equation for the cell is therefore given by

$${\partial F_{\rm cell}}/{\partial x}=\tau (x,t)$$
(4)

In addition, the macroscale force equilibrium implies that at any location (x), the sum of the tension in the cell, F cell(x,t), and the force transferred to a rigid particle F part (x,t), equals to the total tensile force applied to the system, i.e., F(t) = F cell (x,t) +  F part (x,t).

Link Between Nano- and Macrointerfacial Mechanics

Since our analysis is one-dimensional, only the longitudinal component of f recp contributes to the traction. The traction, τ (x,t), can be expressed as,

$$\tau (x,t)=f_{\rm recp} \sin (\alpha)n(x,t)=c(\ell -\ell_{\rm o})\sin (\alpha)$$
(5)

where n(x,t) is the density of the attached receptors (number per unit area) at the location, x, and c = κ n(x,t). For simplicity, in this analysis we assumed that the distribution of n(x,t) is uniform and constant over the stretching cycle Footnote 8 (n r =  400/μm2) and independent of time. Substitution of Eqs. (2), (3), (5) and the relation \({\sin \alpha =(u+u_{\rm o})/\ell}\) into Eq. (4) yields to the field equation

$$\partial ^2u/\partial ^2x=\Omega^2\;\left({1-\frac{\ell_{\rm o}}{\ell}} \right)\left({u+u_{\rm o}}\right)$$
(6)

where Ω2 = κ n r/k, \({\ell =\sqrt {h^2+(u_{\rm o} +u)^2}}, \) and u o is the longitudinal component of ℓo, i.e., \({u_{\rm o} =\ell_{\rm o} \sin \alpha_{\rm o} =\sqrt {\ell_{\rm o}^2 -h^2}}. \) Boundary conditions are:

$$ u=0\;\;\hbox{at}\;\;x=0\;\;\hbox{(symmetry)}$$
(7a)
$${\partial u}/{\partial x}=\varepsilon_{\rm o}\;\;\hbox{at}\;\;x=L/2$$
(7b)

where ɛo and L are input parameters in this analysis, denoting the strain in the cell and the length of the particle, respectively.

Numerical Solution

Since we consider the receptor–ligand bond density approximately constant over stretching cycle, the time, t, only appears as a parameter. Thus, Eq. (6) can be reduced to the second order ordinary differential equation (O.D.E) with respect to x. Substitution of \({p=\frac{du}{dx}}\) and also \({\frac{d^{2}u}{dx^2}=\frac{dp}{du}}, \) further simplifies Eq. (6) to the first order O.D.E. with respect to u

$$p\frac{dp}{du}=\Omega^2\left({1-\frac{\ell_{\rm o}}{\sqrt {h^2+(u_{\rm o} +u)^2} }}\right)\left({u+u_{\rm o}}\right)$$
(8)

Equation 8 can be integrated by separation of variables. After analytical integration of Eq. 8 followed by back substitution of \({\frac{du}{dx}=p}, \) the solution was obtained from the integral:

$$x=\int\limits_0^{u(x)} {\frac{du}{\Omega \sqrt {\ell ^2-2 \ell \ell _{\rm o}+B}}}$$
(9)

where B is the integration constant that must satisfy boundary condition at the edge of the particle (Eq. 7b). Note that the boundary condition at the center of the particle (Eq. 7a) is included in the lower integration limit. The solution of the integral (Eq. 9) was obtained numerically by Newton–Raphson iterative procedure4 with respect to B in order to satisfy the boundary condition at x = L/2 (Eq. 7b).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mijailovich, S.M., Hamada, K. & Tsuda, A. IL-8 Response of Cyclically Stretching Alveolar Epithelial Cells Exposed to Non-fibrous Particles. Ann Biomed Eng 35, 582–594 (2007). https://doi.org/10.1007/s10439-006-9233-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9233-2

Keywords

Navigation