Skip to main content
Log in

A Direct Compression Stimulator for Articular Cartilage and Meniscal Explants

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper describes the development and use of a direct compression stimulator for culturing explants from the meniscus of the knee and articular cartilage. Following design and fabrication of the instrument along with its data acquisition system, the function of the machine was verified by both mechanical means and tissue effect. The loading chamber can hold up to 45 5 mm diameter samples. While designed to stimulate samples up to 4 mm thick, axial displacements as little as 0.127 μm are within the theoretical capacity of the stimulator. In gene expression studies, collagen II and aggrecan expression were examined in explants from articular cartilage as well as medial and lateral menisci subjected to dynamic stimulation and static compression. These results were then compared to free swelling samples. It was found that static compression to cut thickness down-regulated aggrecan and collagen II expression in articular cartilage explants compared to free swelling controls by 94% and 90%, respectively. The application of a dynamic, intermittent, 2% oscillation around the cut thickness returned expression levels to those of free swelling controls at 4 h but not at 76 h. In medial meniscus samples, dynamic compression up-regulated aggrecan expression by 108%, but not collagen II expression, at 4 and 76 h compared to static controls. No difference in gene expression was observed for lateral meniscal explants. Thus, effects of direct compression seen in articular cartilage may not necessarily translate to the knee meniscus. The design of this stimulator will allow a variety of tissues and loading regimens to be examined. It is hoped that regimens can be found that not only return samples to the production levels of free swelling controls, but also surpass them in terms of gene expression, protein synthesis, and functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.

Similar content being viewed by others

REFERENCES

  1. Antoniades, H. N., and C. D. Scher. Radioimmunoassay of a human serum growth factor for Balb/c-3T3 cells: Derivation from platelets. Proc. Natl. Acad. Sci. USA 74:1973–1977, 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Aufderheide, A. C., and K. A. Athanasiou. Mechanical stimulation toward tissue engineering of the knee meniscus. Ann. Biomed. Eng. 32:1161–1174, 2004.

    Article  PubMed  Google Scholar 

  3. Bonassar, L. J., A. J. Grodzinsky, E. H. Frank, S. G. Davila, N. R. Bhaktav, and S. B. Trippel. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J. Orthop. Res. 19:11–17, 2001.

    Article  PubMed  CAS  Google Scholar 

  4. Burton-Wurster, N., M. Vernier-Singer, T. Farquhar, and G. Lust. Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. J. Orthop. Res. 11:717–729, 1993.

    Article  PubMed  CAS  Google Scholar 

  5. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, and E. B. Hunziker. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108(Pt 4):1497–1508, 1995.

    PubMed  CAS  Google Scholar 

  6. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, J. H. Kimura, and E. B. Hunziker. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10:745–758, 1992.

    Article  PubMed  CAS  Google Scholar 

  7. Buschmann, M. D., E. B. Hunziker, Y. J. Kim, A. J. Grodzinsky, and U. o. B. S. M E Mueller Institute for Biomechanics. Altered aggrecan synthesis correlates with cell and nucleus structure in statically compressed cartilage. J. Cell Sci. 109:499–508, 1996.

    PubMed  CAS  Google Scholar 

  8. Djurasovic, M., J. W. Aldridge, R. Grumbles, M. P. Rosenwasser, D. Howell, and A. Ratcliffe. Knee joint immobilization decreases aggrecan gene expression in the meniscus. Am. J. Sports Med. 26:460–466, 1998.

    PubMed  CAS  Google Scholar 

  9. Dowdy, P. A., A. Miniaci, S. P. Arnoczky, P. J. Fowler, and D. R. Boughner. The effect of cast immobilization on meniscal healing. An experimental study in the dog. Am. J. Sports Med. 23:721–728, 1995.

    Article  PubMed  CAS  Google Scholar 

  10. Ferretti, M., S. Madhavan, J. Deschner, B. Rath-Deschner, E. Wypasek, and S. Agarwal. Dynamic Biophysical Strain Modulates Proinflammatory Gene Induction In Meniscal Fibrochondrocytes. Am. J. Physiol. Cell Physiol. 6:C1610–C1615, 2006.

    Google Scholar 

  11. Frank, E. H., M. Jin, A. M. Loening, M. E. Levenston, and A. J. Grodzinsky. A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J. Biomech. 33:1523–1527, 2000.

    Article  PubMed  CAS  Google Scholar 

  12. Gray, M. L., A. M. Pizzanelli, R. C. Lee, A. J. Grodzinsky, and D. A. Swann. Kinetics of the chondrocyte biosynthetic response to compressive load and release. Biochim. Biophys. Acta 991:415–425, 1989.

    PubMed  CAS  Google Scholar 

  13. Guerne, P. A., A. Sublet, and M. Lotz. Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J. Cell. Physiol. 158:476–484, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. Hansen, U., M. Schunke, C. Domm, N. Ioannidis, J. Hassenpflug, T. Gehrke, and B. Kurz. Combination of reduced oxygen tension and intermittent hydrostatic pressure: A useful tool in articular cartilage tissue engineering. J. Biomech. 34:941–949, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Hunter, C. J., S. M. Imler, P. Malaviya, R. M. Nerem, and M. E. Levenston. Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials 23:1249–1259, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Hunter, C. J., J. K. Mouw, and M. E. Levenston. Dynamic compression of chondrocyte-seeded fibrin gels: Effects on matrix accumulation and mechanical stiffness. Osteoarthritis Cartilage 12:117–130, 2004.

    Article  PubMed  Google Scholar 

  17. Imler, S. M., A. N. Doshi, and M. E. Levenston. Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthritis Cartilage 12:736–744, 2004.

    Article  PubMed  Google Scholar 

  18. Kim, Y. J., R. L. Sah, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Mechanical regulation of cartilage biosynthetic behavior: Physical stimuli. Arch. Biochem. Biophys. 311:1–12, 1994.

    Article  PubMed  CAS  Google Scholar 

  19. Kiviranta, I., J. Jurvelin, M. Tammi, A. M. Saamanen, and H. J. Helminen. Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum. 30:801–809, 1987.

    Article  PubMed  CAS  Google Scholar 

  20. Kiviranta, I., M. Tammi, J. Jurvelin, A. M. Saamanen, and H. J. Helminen. Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J. Orthop. Res. 6:188–195, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Larsson, T., R. M. Aspden, and D. Heinegard. Effects of mechanical load on cartilage matrix biosynthesis in vitro. Matrix 11:388–394, 1991.

    PubMed  CAS  Google Scholar 

  22. Lee, C. R., A. J. Grodzinsky, and M. Spector. Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. J. Biomed. Mater Res. 64A:560–569, 2003.

    Article  CAS  Google Scholar 

  23. Levin, A. S., C. T. Chen, and P. A. Torzilli. Effect of tissue maturity on cell viability in load-injured articular cartilage explants. Osteoarthritis Cartilage 13:488–496, 2005.

    Article  PubMed  Google Scholar 

  24. Li, K. W., A. S. Wang, and R. L. Sah. Microenvironment regulation of extracellular signal-regulated kinase activity in chondrocytes: effects of culture configuration, interleukin-1, and compressive stress. Arthritis Rheum. 48:689–699, 2003.

    Article  PubMed  CAS  Google Scholar 

  25. Li, K. W., A. K. Williamson, A. S. Wang, and R. L. Sah. Growth responses of cartilage to static and dynamic compression. Clin. Orthop. S34–S48, 2001.

  26. Lucchinetti, E., C. S. Adams, W. E. Jr. Horton, and P. A. Torzilli. Cartilage viability after repetitive loading: A preliminary report. Osteoarthritis Cartilage 10:71–81, 2002.

    Article  PubMed  CAS  Google Scholar 

  27. Maroudas, A., D. Rigler, and R. Schneiderman. Young and aged cartilage differ in their response to dynamic compression as far as the rate of glycosaminoglycan synthesis is concerned. Trans. Orthop. Res. Soc. 45, 1999.

  28. Mauck, R. L., S. B. Nicoll, S. L. Seyhan, G. A. Ateshian, and C. T. Hung. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue. Eng. 9:597–611, 2003.

    Article  PubMed  CAS  Google Scholar 

  29. Mauck, R. L., S. L. Seyhan, G. A. Ateshian, C. T. Hung, and C. U. J. E. T. M. C. A. A. N. Y. N. Y. U. S. A. Department of Biomedical Engineering. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann. Biomed. Eng. 30(8):1046–1056, 2002.

    Article  PubMed  Google Scholar 

  30. Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, 2000.

    Article  PubMed  CAS  Google Scholar 

  31. Messai, H., Y. Duchossoy, A. M. Khatib, A. Panasyuk, and D. R. Mitrovic. Articular chondrocytes from aging rats respond poorly to insulin-like growth factor-1: An altered signaling pathway. Mech. Ageing Dev. 115:21–37, 2000.

    Article  PubMed  CAS  Google Scholar 

  32. Murray, R. C., C. F. Zhu, A. E. Goodship, K. H. Lakhani, C. M. Agrawal, and K. A. Athanasiou. Exercise affects the mechanical properties and histological appearance of equine articular cartilage. J. Orthop. Res. 17:725–731, 1999.

    Article  PubMed  CAS  Google Scholar 

  33. Parkkinen, J. J., M. J. Lammi, H. J. Helminen, and M. Tammi. Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J. Orthop. Res. 10:610–620, 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Plumb, M. S., and R. M. Aspden. The response of elderly human articular cartilage to mechanical stimuli in vitro. Osteoarthritis Cartilage 13:1084–1091, 2005.

    Article  PubMed  CAS  Google Scholar 

  35. Quinn, T. M., A. J. Grodzinsky, M. D. Buschmann, Y. J. Kim, and E. B. Hunziker. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J. Cell Sci. 111 (Pt 5):573–583, 1998.

    Google Scholar 

  36. Ragan, P. M., A. M. Badger, M. Cook, V. I. Chin, M. Gowen, A. J. Grodzinsky, and M. W. Lark. Down-regulation of chondrocyte aggrecan and Col II expression correlates with increases in static compression magnitude and duration. J. Orthop. Res. 17:836–842, 1999.

    Article  PubMed  CAS  Google Scholar 

  37. Ragan, P. M., V. I. Chin, H. H. Hung, K. Masuda, E. J. Thonar, E. C. Arner, A. J. Grodzinsky, and J. D. Sandy. Chondrocyte extracellular matrix synthesis and turnover are influenced by static compression in a new alginate disc culture system. Arch. Biochem. Biophys. 383:256–264, 2000.

    Article  PubMed  CAS  Google Scholar 

  38. Rodkey, W. G., K. R. Stone, and J. R. Steadman. Chapter 12: prosthetic meniscal replacement. In: Biology and Biomechanics of the Trumatized Synovial Joint: The Knee as a Model, edited by G. A. M. Finerman and F. R. Noyes. Rosemont: American Academy of Orthopaedic Surgeons, 1992, pp. 221–231.

    Google Scholar 

  39. Sah, R. L. Effects of static and dynamic compression on matrix metabolism in cartilage explants. In: Articular cartilage and osteoarthritis, edited by K. E. Kuettner. New York: Raven Press, 1992, pp. 373–392.

    Google Scholar 

  40. Sah, R. L., Y. J. Kim, J. Y. Doong, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7:619–636, 1989.

    Article  PubMed  CAS  Google Scholar 

  41. Sauerland, K., R. X. Raiss, and J. Steinmeyer. Proteoglycan metabolism and viability of articular cartilage explants as modulated by the frequency of intermittent loading. Osteoarthritis Cartilage 11:343–350, 2003.

    Article  PubMed  CAS  Google Scholar 

  42. Shieh, A. C., and K. A. Athanasiou. Biomechanics of single chondrocytes and osteoarthritis. Crit. Rev. Biomed. Eng. 30:307–343, 2002.

    Article  PubMed  Google Scholar 

  43. Steinmeyer, J. A computer-controlled mechanical culture system for biological testing of articular cartilage explants. J. Biomech. 30:841–845, 1997.

    Article  PubMed  CAS  Google Scholar 

  44. Steinmeyer, J., and B. Ackermann. The effect of continuously applied cyclic mechanical loading on the fibronectin metabolism of articular cartilage explants. Res. Exp. Med. (Berl.) 198:247–260, 1999.

    Article  CAS  Google Scholar 

  45. Steinmeyer, J., and S. Knue. The proteoglycan metabolism of mature bovine articular cartilage explants superimposed to continuously applied cyclic mechanical loading. Biochem. Biophys. Res. Commun. 240:216–221, 1997.

    Article  PubMed  CAS  Google Scholar 

  46. Steinmeyer, J., S. Knue, R. X. Raiss, and I. Pelzer. Effects of intermittently applied cyclic loading on proteoglycan metabolism and swelling behaviour of articular cartilage explants. Osteoarthritis Cartilage 7:155–164, 1999.

    Article  PubMed  CAS  Google Scholar 

  47. Steinmeyer, J., P. A. Torzilli, N. Burton-Wurster, and G. Lust. A new pressure chamber to study the biosynthetic response of articular cartilage to mechanical loading. Res. Exp. Med. (Berl.) 193:137–142, 1993.

    Article  CAS  Google Scholar 

  48. Torzilli, P. A., R. Grigiene, C. Huang, S. M. Friedman, S. B. Doty, A. L. Boskey, and G. Lust. Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J. Biomech. 30:1–9, 1997.

    Article  PubMed  CAS  Google Scholar 

  49. Upton, M. L., J. Chen, F. Guilak, and L. A. Setton. Differential effects of static and dynamic compression on meniscal cell gene expression. J. Orthop. Res. 21:963–969, 2003.

    Article  PubMed  CAS  Google Scholar 

  50. van Der Meulen, M. C., and R. Huiskes. Why mechanobiology? A survey article. J. Biomech. 35:401–414, 2002.

    Article  PubMed  Google Scholar 

  51. Waldman, S. D., C. G. Spiteri, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J. Orthop. Res. 21:590–596, 2003.

    Article  PubMed  CAS  Google Scholar 

  52. Wight, M. TGF-beta1 in bovine serum. Art Sci. 19:1–3, 2001.

    Google Scholar 

  53. Wolff, J. The law of bone remodelling. Berlin; New York: Springer-Verlag, 1892, xii, 126 pp.

    Google Scholar 

  54. Wong, M., P. Wuethrich, M. D. Buschmann, P. Eggli, and E. Hunziker. Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J. Orthop. Res. 15:189–196, 1997.

    Article  PubMed  CAS  Google Scholar 

  55. Zapf, J., B. Morell, H. Walter, Z. Laron, and E. R. Froesch. Serum levels of insulin-like growth factor (IGF) and its carrier protein in various metabolic disorders. Acta Endocrinol. (Copenh.) 95:505–517, 1980.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriacos A. Athanasiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aufderheide, A.C., Athanasiou, K.A. A Direct Compression Stimulator for Articular Cartilage and Meniscal Explants. Ann Biomed Eng 34, 1463–1474 (2006). https://doi.org/10.1007/s10439-006-9157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9157-x

Keywords

Navigation