Skip to main content
Log in

Hemodynamic Computation Using Multiphase Flow Dynamics in a Right Coronary Artery

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hemodynamic data on the roles of physiologically critical blood particulates are needed to better understand cardiovascular diseases. The blood flow patterns and particulate buildup were numerically simulated using the multiphase non-Newtonian theory of dense suspension hemodynamics in a realistic right coronary artery (RCA) having various cross sections. The local hemodynamic factors, such as wall shear stress (WSS), red blood cell (RBC) buildup, viscosity, and velocity, varied with the spatially nonuniform vessel structures and temporal cardiac cycles. The model generally predicted higher RBC buildup on the inside radius of curvature. A low WSS region was found in the high RBC buildup region, in particular, on the area of maximum curvature of a realistic human RCA. The complex recirculation patterns, the oscillatory flow with flow reversal, and vessel geometry resulted in RBC buildup due to the prolonged particulate residence time, specifically, at the end of the diastole cycle. The increase of the initial plasma viscosity caused the lower WSS. These predictions have significant implications for understanding the local hemodynamic phenomena that may contribute to the earliest stage of atherosclerosis, as clinically observed on the inside curvatures and torsion of coronary arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.
FIGURE 11.
FIGURE 12.

Similar content being viewed by others

REFERENCES

  1. American Heart Association. Heart Disease and Stroke Statistics—2004 Update. Dallas: American Heart Association. Available at http://www.americanheart.org, 2004.

  2. Anderson, T. B., and R. Jackson. A fluid mechanical description of fluidized beds. I&EC Fundament. 6:524–539, 1967.

    Google Scholar 

  3. Berger, S., and L. Jou. Flows in stenotic vessels. Annu. Rev. Fluid Mech. 32:347–382, 2000.

    Article  Google Scholar 

  4. Berthier, B., R. Bouzerar, and C. Legallais. Blood flow patterns in an anatomically realistic coronary vessel: Influence of three different reconstruction methods. J. Biomech. 35:1347–1356, 2002.

    Article  PubMed  CAS  Google Scholar 

  5. Bird, R. B., W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. New York: Wiley, 1960.

  6. Bonert, M., R. L. Leask, J. Butany, C. R. Ethier, J. G. Myers, K. W. Johnston, and M. Ojha. The relationship between wall shear stress distributions and intimal thickening in the human abdominal aorta. Biomed. Eng. Online 2:I8, 2003.

    Article  Google Scholar 

  7. Boo, Y. C., J. Hwang, M. Sykes, B. J. Michell, B. E. Kemp, H. Lum, and H. Jo. Shear stress stimulates phosphorylation of eNOS at Ser635 by a protein kinase A-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 283:H1819–H1828, 2002.

    PubMed  CAS  Google Scholar 

  8. Brooks, D. E., J. W. Goodwin, and G. V. F. Seaman. Interactions among erythrocytes under shear. J. Appl. Physiol. 28:172–177, 1970.

    PubMed  CAS  Google Scholar 

  9. Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Arterial wall shear and distribution of early atheroma in man. Nature 223:1159–1161, 1969.

    Article  PubMed  CAS  Google Scholar 

  10. Cholley, B. P., S. G. Shroff, J. Sandelski, C. Korcarz, B. A. Balasia, S. Jain, D. S. Berger, M. B. Murphy, R. H. Marcus, and R. M. Lang. Differential effects of chronic oral antihypertensive therapies on systemic arterial circulation and ventricular energetics in African-American patients. Circulation 91:1052–1062, 1995.

    PubMed  CAS  Google Scholar 

  11. Corson, M. A., N. L. James, S. E. Latta, R. M. Nerem, B. C. Berk, and D. G. Harrison. Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ. Res. 79:984–991, 1996.

    PubMed  CAS  Google Scholar 

  12. Dai, G., M. R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, R. D. Kamm, G. Garcia-Cardena, and M. A. Gimbrone Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl. Acad. Sci. 101:14871–14876, 2004.

    Article  PubMed  CAS  Google Scholar 

  13. Ding, J., R. W. Lyczkowski, W. T. Sha, S. A. Altobelli, and E. Fukushima. Numerical analysis of liquid-solid suspension velocities and concentrations obtained by NMR imaging. Powder Technol. 77:301–312, 1993.

    Article  CAS  Google Scholar 

  14. Ding, J., R. W. Lyczkowski, and W. T. Sha. Modeling of concentrated liquid-solids flow in pipes displaying shear-thinning phenomena. Chem. Eng. Commun. 138:145–155, 1995.

    Article  CAS  Google Scholar 

  15. Ding, Z., H. Zhu, and M. H. Friedman. Coronary artery dynamics in vivo. Ann. Biomed. Eng. 30:419–429, 2002.

    Article  PubMed  Google Scholar 

  16. Dill, D. B., and D. L. Costill. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 37:247–248, 1974.

    PubMed  CAS  Google Scholar 

  17. Doriot, P.-A., P.-A. Dorsaz, L. Dorsaz, E. D. Benedetti, P. Chatelain, and P. Delafontaine. In-vivo measurements of wall shear stress in human coronary arteries. Coron. Artery Dis. 11:495–502, 2000.

    Article  PubMed  CAS  Google Scholar 

  18. Feldman, C. L., O. J. Ilegbusi, Z. Hu., R. Nesto, S. Waxman, and P. H. Stone. Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: A methodology to predict progression of coronary atherosclerosis. Am. Heart J. 143:931–939, 2002.

    Article  PubMed  Google Scholar 

  19. Fluent Inc. FLUENT User's Guide. Lebanon, NH: Fluent Inc., 2003.

  20. Fuchs, J., I. Weinberger, Z. Rotenberg, A. Erdberg, E. Davidson, H. Joshua, and J. Agmon. Plasma viscosity in ischemic heart disease. Am. Heart J. 108:435–439, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.

  22. Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. New York: Academic Press, 1994.

  23. Gidaspow, D., J. Jung, and R. K. Singh. Hydrodynamics of fluidization using kinetic theory: An emerging paradigm. Powder Tech. 148:123–141, 2004.

    Article  CAS  Google Scholar 

  24. Giddens, D. P., C. K. Zarins, and S. Glagov. Role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng. 115:588–594, 1993.

    Article  PubMed  CAS  Google Scholar 

  25. Gijsen, F. J. H., F. N. Van de Vosse, and J. D. Janssen. The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model. J. Biomech. 32:601–608, 1999.

    Article  PubMed  CAS  Google Scholar 

  26. Glagov, S., E. Weisenberg, C. K. Zarins, R. Stankunavicius, and G. J. Kolettis. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316:1371–1375, 1987.

    PubMed  CAS  Google Scholar 

  27. Goldsmith, H. L., and J. C. Marlow. Flow behavior of erythrocytes: II. Particle motions in concentrated suspensions of ghost cells. J. Coll. Interf. Sci. 71:383–407, 1979.

    Article  Google Scholar 

  28. Gonzales, S., and T. M. Wick. Hemodynamic modulation of monocytic cell adherence to vascular endothelium. Ann. Biomed. Eng. 24:382–393, 1996.

    Article  PubMed  CAS  Google Scholar 

  29. Guenther, C., and M. Syamlal. The effect of numerical diffusion on simulation of isolated bubbles in a gas-solid fluidized bed. Powder Tech. 116:142–154, 2001.

    Article  CAS  Google Scholar 

  30. Hajjar, D. P., and A. C. Nicholson. Atherosclerosis: An understanding of the cellular and molecular basis of the disease promises new approaches for its treatment in the near future. Am. Scientist 83:460–467, 1995.

    Google Scholar 

  31. Hoi, Y., H. Meng, S. H. Woodward, B. R. Bendok, R. A. Hanel, L. R. Guterman, and L. N. Hopkins. Effect of arterial geometry on aneurysm growth: Three-dimensional computational fluid dynamics study. J. Neurosurg. 101:676–681, 2004.

    PubMed  Google Scholar 

  32. Jan, K.-M., S. Chien, and J. T. Bigger. Observations on blood viscosity changes after acute myocardial infarction. Circulation 51:1079–1084, 1975.

    PubMed  CAS  Google Scholar 

  33. Jung, J., D. Gidaspow, and I. K. Gamwo. Bubble computation, granular temperatures and Reynolds stresses. Chem. Eng. Commun. (in press).

  34. Jung, J., R. W. Lyczkowski, C. B. Panchal, and A. Hassanein. Multiphase hemodynamic simulation with pulsatile flow in a coronary artery. J. Biomechanics (in press).

  35. Kleinstreuer, C. Two-Phase Flow: Theory and Application. New York: Taylor & Francis, 2003.

  36. Krams, R., J. J. Wentzel, J. A. F. Oomen, R. Vinke, J. C. H. Schuurbiers, P. J. de Feyter, P. W. Serruys, and C. J. Slager. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Arterioscler. Thromb. Vasc. Biol. 17:2061–2065, 1997.

    PubMed  CAS  Google Scholar 

  37. Ku, D. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.

    Article  Google Scholar 

  38. Leonhardt, H., H.-R. Arntz, and U. H. Klemens. Studies of plasma viscosity in primary hyperlipoproteinaemia. Atherosclerosis 28:29–40, 1977.

    Article  PubMed  CAS  Google Scholar 

  39. Lightfoot, E. N. Transport Phenomena and Living Systems: Biomedical Aspects of Momentum and Mass Transport. New York: Wiley, 1974.

  40. Longest, P. W., C. Kleinstreuer, and J. R. Buchanan. Efficient computation of micro-particle dynamics including wall effects. Comp. Fluids 33:577–602, 2004.

    Article  Google Scholar 

  41. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282:2035–2042, 1999.

    Article  CAS  Google Scholar 

  42. Melder, R. J., L. L. Munn, S. Yamada, C. Ohkubo, and R. K. Jain. Selectin- and integrin-mediated T-lymphocyte rolling and arrest on TNF-(-activated endothelium: Augmentation by erythrocytes. Biophys. J. 69:2131–2138, 1995.

    PubMed  CAS  Google Scholar 

  43. Munn, L. L., R. J. Melder, and R. K. Jain. Role of erythrocytes in leukocyte-endothelial interactions: Mathematical model and experimental validation. Biophys. J. 71:466–478, 1996.

    PubMed  CAS  Google Scholar 

  44. Myers, J. G., J. A. Moore, M. Ojha, K. W. Johnston, and C. R. Ethier. Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng. 29:109–120, 2001.

    Article  PubMed  CAS  Google Scholar 

  45. Nichols, W. W., and M. F. O'Rourke. McDonald's Blood Flow in Arteries. London: Arnold, 1998.

  46. Phillips, R. J., R. C. Amstrong, and R. A. Brown. A constitutive equation for concentrated suspension that accounts for shear-induced particle migration. Phys. Fluids A 4:30–40, 1992.

    Google Scholar 

  47. Poppas, A., S. G. Shroff, C. E. Korcarz, J. U. Hibbard, D. S. Berger, M. D. Lindheimer, and R. M. Lang. Serial assessment of the cardiovascular system in normal pregnancy: Role of arterial compliance and pulsatile arterial load. Circulation 95:2407–2415, 1997.

    PubMed  CAS  Google Scholar 

  48. Qiu, Y., and J. M. Tarbell. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J. Biomech. Eng. 122:77–85, 2000.

    Article  PubMed  CAS  Google Scholar 

  49. Sinton, S. W., and A. W. Chow. NMR flow imaging of fluids and solid suspensions in Poiseuille flow. J. Rheol. 35:735–772, 1991.

    Article  CAS  Google Scholar 

  50. Steinman, D. A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30:482–497, 2002.

    Article  Google Scholar 

  51. Steinman, D. A., J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am. J. Neuroradiol. 24:559–566, 2003.

    PubMed  Google Scholar 

  52. Steinman, D. A., D. A. Vorp, and C. R. Ethier. Computational modeling of arterial biomechanics: Insights into pathogenesis and treatment of vascular disease. J. Vasc. Surg. 37:1118–1128, 2003.

    Article  PubMed  CAS  Google Scholar 

  53. Stone, P. H., A. U. Coskun, Y. Yeghiazarians, S. Kinlay, J. J. Popma, R. E. Kuntz, and C. L. Feldman. Prediction of sites of coronary atherosclerosis progression: In vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr. Opin. Cardiol. 18:458–470, 2003.

    Article  PubMed  Google Scholar 

  54. Stone, P. H., A. U. Coskun, S. Kinlay, M. E. Clark, M. Sonka, A. Wahle, O. J. Ilegbusi, Y. Yeghiazarians, J. J. Popma, J. Orav, R. E. Kuntz, and C. L. Feldman. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: In vivo 6-month follow-up study. Circulation 108:438–444, 2003.

    Article  PubMed  Google Scholar 

  55. Sun, C., C. Migliorini, and L. L. Munn. Red blood cells initiate leukocyte rolling in postcapillary expansions: A Lattice Boltzmann analysis. Biophys. J. 85:208–222, 2003.

    Article  PubMed  CAS  Google Scholar 

  56. Taylor, C. A., and M. T. Draney. Experimental and computational methods in cardiovascular fluid mechanics. Annu. Rev. Fluid Mech. 36:197–231, 2004.

    Article  Google Scholar 

  57. Thubrikar, M. J., and F. Robicsek. Pressure-induced arterial wall stress and atherosclerosis. Ann. Thorac. Surg. 59:1594–1603, 1995.

    Article  PubMed  CAS  Google Scholar 

  58. Traub, O., and B. C. Berk. Laminar shear stress: Mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18:677–685, 1998.

    PubMed  CAS  Google Scholar 

  59. van de Vosse, F. N., F. J. H. Gijsen, and B. J. B. M. Wolters. Numerical analysis of coronary artery flow. ASME 2001 Bioeng. Conf. BED 50:17–18, 2001.

    Google Scholar 

  60. van Langenhove, G., J. J. Wentzel, R. Krams, C. J. Slager, J. N. Hamburger, and P. W. Serruys. Helical velocity patterns in a human coronary artery: A three-dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness. Circulation 102:e22–e24, 2000.

    PubMed  CAS  Google Scholar 

  61. Wahle, A., J. J. Lopez, E. C. Pennington, S. L. Meeks, K. C. Braddy, J. M. Fox, T. M. H. Brennan, J. M. Buatti, J. D. Rossen, and M. Sonka. Effect of vessel geometry and catheter position on dose delivery in intracoronary brachytherapy. IEEE Trans. Biomed. Eng. 50:1286–1295, 2003.

    Article  PubMed  Google Scholar 

  62. Wahle, A., M. E. Olszewski, and M. Sonka. Interactive virtual endoscopy in coronary arteries based on multimodality fusion. IEEE Trans. Med. Imaging 23:1391–1403, 2004.

    Article  PubMed  Google Scholar 

  63. Walpola, P. L., A. I. Gotlieb, M. I. Cybulsky, and B. L. Langille. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler. Thromb. Vasc. Biol. 15:2–10, 1995.

    PubMed  CAS  Google Scholar 

  64. Wasserman, S. M., F. Mehraban, L. G. Komuves, R.-B. Yang, J. E. Tomlinson, Y. Zhang, F. Spriggs, and J. N. Topper. Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol. Genom. 12:13–23, 2002.

    CAS  Google Scholar 

  65. Wentzel, J. J., E. Janssen, J. Vos, J. C. H. Schuurbiers, R. Krams, P. W. Serruys, P. J. de Feyter, and C. J. Slager. Extension of increased atherosclerotic wall thickness into high shear stress regions is associated with loss of compensatory remodeling. Circulation 108:17–23, 2003.

    Article  PubMed  Google Scholar 

  66. Wojnarowski, J. Numerical study of bileaf heart valves performance. In: International Scientific Practical Conference: Efficiency of Engineering Education in XX Century. Ukraine: Donetsk, May 29–31, 2001.

  67. Zeng, D., Z. Ding, M. H. Friedman, and C. R. Ethier. Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31:420–429, 2003.

    Article  PubMed  Google Scholar 

  68. Zhao, S. Z., B. Ariff, Q. Long, A. D. Hughes, S. A. Thom, A. V. Stanton, and X. Y. Xu. Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J. Biomech. 35:1367–1377, 2002.

    Article  PubMed  CAS  Google Scholar 

  69. Zhu, H., and M. H. Friedman. Relation between the dynamic geometry and wall thickness of a human coronary artery. Arterioscler. Thromb. Vasc. Biol. 23:2260–2265, 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr Marc Horner of Fluent, Inc., for his technical support with the FLUENT code and Professor Sanjeev G. Shroff of the University of Pittsburgh and Dr Chandrakant B. Panchal of ANL for their advice in the biomedical area. This study was supported under U.S. Department of Energy contract W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghwun Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J., Hassanein, A. & Lyczkowski, R.W. Hemodynamic Computation Using Multiphase Flow Dynamics in a Right Coronary Artery. Ann Biomed Eng 34, 393–407 (2006). https://doi.org/10.1007/s10439-005-9017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9017-0

Keywords

Navigation