Skip to main content
Log in

Long-Term Mathematical Model Involving Renal Sympathetic Nerve Activity, Arterial Pressure, and Sodium Excretion

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a physiological long-term model of the cardiovascular system. It integrates the previous models developed by Guyton, Uttamsingh and Coleman. Additionally it introduces mechanisms of direct effects of the renal sympathetic nerve activity (rsna) on tubular sodium reabsorption and renin secretion in accordance with experimental data from literature. The resulting mathematical model constitutes the first long-term model of the cardiovascular system accounting for the effects of rsna on kidney functions in such detail. The objective of developing such a model is to observe the consequences of long-term rsna increase and impairment of rsna inhibition under volume loading. This model provides an understanding of the rsna-related mechanisms, which cause mean arterial pressure increase in hypertension and total sodium amount increase (sodium retention) in congestive heart failure, nephrotic syndrome and cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barba, G., F. P. Cappuccio, L. Russo, F. Stinga, R. Iacone, and P. Strazzullo. Renal function and blood pressure response to dietary salt restriction in normotensive men. Hypertension 27:1160–1164, 1996.

    Google Scholar 

  2. Barrett, C. J., R. Ramchandra, S.-J. Guild, A. Lala, D. M. Budgett, and S. C. Malpas. What sets the long-term level of renal sympathetic nerve activity, A role for angiotensin II and baroreflexes. Circ Res. 92:1330–1336, 2003.

    Article  Google Scholar 

  3. Bigelow, J. H., J. C. Dehaven, and M. L. Shapley. System analysis of the renal function. J. Theor. Biol. 41:287–322, 1973.

    Article  Google Scholar 

  4. Braith R. W., R. M. Mills, C. S. Wilcox, V. A. Convertino, G. L. Davis, M. C. Limacher, and C. E. Wood. Fluid homeostasis after heart transplantation: The role of cardiac denervation. J. Heart Lung Transplant. 15:872–880, 1996.

    Google Scholar 

  5. Braith R. W., R. M. Mills, C. S. Wilcox, G. L. Davis, and C. E. Wood. Breakdown of blood pressure and body fluid homeostasis in heart transplant recipients. J. Am. Coll. Cardiol. 27:375–383, 1996.

    Article  Google Scholar 

  6. Cameron, W. H. A model framework for computer simulation of overall renal function. J. Theor. Biol. 66:551–572, 1977.

    Article  Google Scholar 

  7. Coleman, T. G., and J. E. Hall. A mathematical model of renal hemodynamics and excretory function. In: Structuring Biological Systems: A Computer Modelling Approach, edited by S. S. Iyengar. Boca Raton, Florida: CRC Press, 1992, pp. 89–124.

  8. Denton, K. M., A. Shweta, and W. P. Anderson. Pregulomerular and postglomerular resistance responses to different levels of sympathetic activation by hypoxia. J. Am. Soc. Nephrol. 13:27–34, 2002.

    Google Scholar 

  9. DiBona, G, F., S. Y. Jones, and L. L. Sawin. Effect of endogenous angiotensin II on renal nerve activity and its arterial baroreflex regulation. Am. J. Physiol. 271 (Regul. Integr. Comp. Physiol. 40):R361–R367, 1996.

  10. DiBona, G. F., and L. L. Sawin. Reflex Regulation of Renal Nerve Activity in Cardiac Failure. Am. J. Phsiol. 266 (Regul. Integr. Comp. Physiol. 35):R27–R39, 1994.

    Google Scholar 

  11. DiBona, G. F., S. Y. Jones, and L. L. Sawin. Angiotensin receptor antagonist improves cardiac reflex control of renal sodium handling in heart failure. Am. J. Physiol. 274 (Heart Circ. Physiol. 43):H636–H641, 1998.

    Google Scholar 

  12. DiBona, G. F., and U. C. Kopp. Neural control of renal function. Physiol. Rev. 77(1):75–197, 1997.

    Google Scholar 

  13. DiBona, G. F., L. L. Sawin, S. Y. Jones. Characteristics of renal sympathetic nerve activity in sodium retaining disorders. Am. J. Physiol. 271 (Regul. Integr. Comp. Physiol. 40):R295–R302, 1996.

    Google Scholar 

  14. DiBona, G. F., L. L. Sawin. Role of renal nerves in sodium retention of cirrhosis and congestive heart failure. Am. J. Physiol. 260 (Regul. Integr. Comp. Physiol. 29):R298–R305, 1991.

    Google Scholar 

  15. DiDona, G. F. Neural control of the kidney: Past, present and future. Hypertension 41(part 2):621–624, 2003.

    Google Scholar 

  16. Feng, J. H., N. D. Markondu, and G. A. McGregor. Importance of the renin system for determining blood pressure fall with acute salt restriction in hypertensive and normotensive whites. Hypertension 38:321–325, 2001.

    Google Scholar 

  17. Greenberg, S. G., S. Tershner, and J. L. Osborn. Neurogenic regulation of rate of achieving sodium balance after increasing sodium intake. Am. J. Physiol. 261:F300–F307, 1991.

    Google Scholar 

  18. Guyton A. C., A. E. Taylor, and H. J. Granger. Circulatory Physiology II: Dynamics and Control of the Body Fluids. Philadelphia:W. B. Saunders Company, 1975, p. 252, 287.

  19. Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology. Philadelphia: W. B. Saunders Company, 2000, p. 202, 309.

  20. Guyton, A. C., and T. G. Coleman. Long-term regulation of the circulation: Interrelationships with body fluids volumes. In: Physical Bases of Circulatory Transport: Regulation and Exchange, edited by E. B. Reeve and A. C. Guyton. Philadelphia: W. B. Saunders Company, 1967, pp. 179–201.

  21. Guyton, A. C. Circulatory Physiology III: Arterial Pressure and Hypertension. Philadelphia: W. B. Saunders Company, 1980, p. 169, 172, 198, 199, 200, 201.

  22. Guyton, A. C., T. G. Coleman, and H. J. Granger. Circulation: Overall regulation. Ann. Rev. Physiol. 34:13–46, 1972.

    Article  Google Scholar 

  23. Guyton, A. C. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol. Rev. 35:123–129, 1955.

    Google Scholar 

  24. Hall, J. E., M. W. Brands. The renin angiotensin-aldosterone systems: Renal mechanisms and circulatory homeostasis. In: The Kidney, Physiology and Pathophysiology, edited by D. W. Seldin and G. Gebisch. Philadelphia: Lippincott Williams & Wilkins, 2000, p. 1038.

  25. Huang W. C., and J. N. Wu. Blunted renal responses to atrial natriuretic peptide and its reversal by unclipping in one-kidney, one clip goldblatt hypertensive rats. J. Hypertens. 15(2):181–189, 1997.

    Article  Google Scholar 

  26. Ichikawa I. Hemodynamic influence of altered distal salt delivery on glomerular microcirculation. Kidney Int. 22(Suppl 12):S109–S113, 1982.

    MathSciNet  Google Scholar 

  27. Ikeda N., F. Maruo, M. Shirataka, and T. Sato. A model of overall regulation of body fluids. Ann. Biomed. Eng. 7:135–166, 1979.

    Google Scholar 

  28. Jacob, F., P. Ariza, and J. W. Osborn. Renal denervation chronically lowers arterial pressure independent of dietary sodium intake in normal rats. Am. J. Physiol. Heart Circ. Physiol. 284:H2302–H2310, 2003.

    Google Scholar 

  29. Kottke, F. J., W. G. Kubicek, and M. B. Visscher. The production of arterial hypertension by chronic renal-nerve stimulation. Am. J. Physiol. 145:38–47, 1945.

    Google Scholar 

  30. Krück, F., and H. J. Kramer. Third factor and edema formation. Cont. Nephrol. 13:12–20, 1978.

    Google Scholar 

  31. Lohmeier, T. E. Interactions between angiotensin II and baroreflexes in long-term regulation of renal sympathetic nerve activity. Circ. Res. 92:1282–1284, 2003.

    Article  Google Scholar 

  32. Lohmeier, T. E., D. A. Hildebrandt, and W. A. Hood. Renal nerves promote sodium excretion during long-term increases in salt intake. Hypertension 33(part II):487–492, 1999.

    Google Scholar 

  33. Lohmeier, T. E., H. L. Mizelle, G. A. Reinhart, and J. P. Montani. Influence of angiotensin on the early progression of heart failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278:R74–R86, 2000.

    Google Scholar 

  34. Mejia R., J. F. Sands, J. L. Stephenson, and M. A. Knepper. Renal actions of atrial natriuretic factor: A mathematical modeling study. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol.) 26:F1146–F1157, 1989.

  35. Miki K., Y. Hayashida, and K. Shiraki. Cardiac-renal neural reflex plays a major role in natriuresis by left atrial distention. Am. J. Physiol. 264 (Regul. Integr. Comp. Physiol. 33):R369–R375, 1993.

    Google Scholar 

  36. Nelson, L. D., and J. L. Osborn. Neurogenic control of renal function in response to graded nonhypotensive hemorrhage in conscious dogs. Am. J. Physiol. 264 (Regul. Integr. Comp. Physiol. 33):R661–R1667, 1993.

    Google Scholar 

  37. Nomora, G., T. Takabatake, S. Arai, D. Uno, M. Shimao, and N. Hattori. Effect of acute unilateral renal denervation on tubular sodium reabsorption in the dog. Am. J. Physiol. 232(1):F16–F19, 1977.

    Google Scholar 

  38. Reinhart, G. A., T. E. Lohmeier, and C. E. Hord. Hypertension induced by chronic renal adrenergic stimulation is angiotensin dependent. Hypertension. 25:940–949, 1995.

    Google Scholar 

  39. Singer, D. R. J., N. D. Markandu, J. J. Morton, M. A. Miller, G. A. Sagnella, and G. A. MacGregor. Angiotensin II suppression is a major factor permitting excretion of an acute sodium load in humans. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol 35):F89–F93, 1994.

    Google Scholar 

  40. Uttamsingh, R. J., M. S. Leaning, J. A. Bushman, E. R. Carson, and L. Finkelstein. Mathematical model of the human renal system. Med. Biol. Eng. Comput. 23:525–535, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yagmur Denizhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaaslan, F., Denizhan, Y., Kayserilioglu, A. et al. Long-Term Mathematical Model Involving Renal Sympathetic Nerve Activity, Arterial Pressure, and Sodium Excretion. Ann Biomed Eng 33, 1607–1630 (2005). https://doi.org/10.1007/s10439-005-5976-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-5976-4

Key Words

Navigation