Skip to main content
Log in

Effects of Pinacidil on Reentrant Arrhythmias Generated During Acute Regional Ischemia: A Simulation Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Many experimental studies have pointed out the controversy involving the arrhythmogenic effects of potassium channel openers (KCOs) in ischemia. KCOs activate the ATP-sensitive potassium current [IK(ATP)], resulting in action potential duration (APD) shortening, especially under pathological conditions such as ischemia. Acute myocardial ischemia leads to electrophysiological inhomogeneities in APD, conduction velocity, and refractoriness, which provide the substrate for reentry initiation and maintenance and may lead to malignant arrhythmias. The aim of this work is to analyze the effect of the KCO pinacidil on vulnerability to reentry during acute regional ischemia using computer simulations. We use a two-dimensional virtual heart tissue with implementation of acute regional ischemia conditions. Membrane kinetics are represented by a modified version of Luo–Rudy (phase II) action potential model that incorporates the effect of pinacidil on IK(ATP). The vulnerable window (VW) for reentry is quantified for different doses of pinacidil. Our results show that for doses below 3 μmol/l the VW widens with increasing pinacidil concentration, whereas for higher doses of pinacidil the VW decreases, becoming zero for concentrations above 10 μmol/l. The ionic mechanisms involved in this behavior are explored. This study demonstrates that the effect of pinacidil on arrhythmogenesis is strongly dose-dependent, and that high doses of pinacidil exert a strong antiarrhythmic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allessie, M. A., F. I. Bonke, and F. J. Schopman. Circus movement in rabbit atrial muscle as a mechanism of tachycardia II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block, as studied with multiple microelectrodes. Circ. Res. 39(2):168–177, 1976.

    PubMed  Google Scholar 

  2. Antzelevitch, C., and J. M. Di Diego. Role of K+ channel activators in cardiac electrophysiology and arrhythmias. Circulation 85(4):1627–1629, 1992.

    PubMed  Google Scholar 

  3. Chi, L., A. Uprichard, and B. Lucchesi. Profibrillatory actions of pinacidil in a conscious canine model of sudden cardiac death. J. Cardiovasc. Pharmacol. 15:452–464, 1990.

    PubMed  Google Scholar 

  4. Cole, W., C. McPherson, and D. Sonntag. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ. Res. 69:571–581, 1991.

    PubMed  Google Scholar 

  5. Coronel, R. Distribution of extracellular potassium during myocardial ischemia. Master’s thesis. University of Amsterdam, 1988.

  6. D’Alonzo, A., R. Darbenzio, and T. Hess. Effect of potassium on the action of the K(ATP) modulators cromakalim, pinacidil or glibenclamide on arrhythmias in isolated perfused heart subjected to regional ischemia. Cardiovasc. Res. 28:881–887, 1994.

    PubMed  Google Scholar 

  7. D’Alonzo, A., J. Zhu, R. Darbenzio, C. Dorso, and G. Grover. Proarrhythmic effects of pinacidil are partially mediated through enhancement of cathecolamine release in isolated perfused guinea-pig hearts. J. Mol. Cell. Cardiol. 30:415–423, 1998.

    Article  PubMed  Google Scholar 

  8. Downar, E., M. J. Janse, and D. Durrer. The effect of “ischemic” blood on transmembrane potentials of normal porcine ventricular myocardium. Circulation 55:455–462, 1977.

    PubMed  Google Scholar 

  9. Fan, Z., K. Nakayama, and M. Hiraoka. Multiple actions of pinacidil on adenosine-triphosphate-sensitive potassium channels in guinea-pig ventricular myocytes. J. Physiol. 430:273–295, 1990.

    PubMed  Google Scholar 

  10. Ferrero, J. M., Jr., J. Sáiz, J. M. Ferrero, and N. Thakor. Simulation of action potentials from metabolically impaired cardiac myocytes. Role of ATP-sensitive K+ current. Circ. Res. 79:208–221, 1996.

    PubMed  Google Scholar 

  11. Ferrero, J. M., Jr., B. Trénor, B. Rodríguez, and F. J. Sáiz. Electrical activity and reentry during acute regional myocardial ischemia: Insights from simulations. Int. J. Bif. Chaos 13(12):3703–3715, 2003.

    Article  MathSciNet  Google Scholar 

  12. Janse, M., and A. Kleber. Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ. Res. 49(5):1069–1081, 1981.

    PubMed  Google Scholar 

  13. Janse, M. J., A. G. Kleber, A. Capucci, R. Coronel, and F. Wilms-Schopman. Electrophysiological basis for arrhythmias caused by acute ischemia. J. Mol. Cell. Cardiol. 18:339–355, 1986.

    PubMed  Google Scholar 

  14. Janse, M., F. van Capelle, H. Morsink, A. G. Kleber, F. Wilms-Schopman, R. Cardinal, C. N. D’Alnoncourt, and D. Durrer. Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Circ. Res. 47(2):151–165, 1980.

    PubMed  Google Scholar 

  15. Janse, M. J., and A. L. Wit. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol. Rev. 69(4):1049–1169, 1989.

    PubMed  Google Scholar 

  16. Kagiyama, Y., J. L. Hill, and L. S. Gettes. Interaction of acidosis and increased extracellular potassium on action potential characteristics and conduction. Circ. Res. 51:614–623, 1982.

    PubMed  Google Scholar 

  17. Kleber, A. G., M. J. Janse, F. J. Wilms-Schopmann, A. A. Wilde, and R. Coronel. Changes in conduction velocity during acute ischemia in ventricular myocardium of the isolated porcine heart. Circulation 73(1):189–198, 1986.

    PubMed  Google Scholar 

  18. Leon, L. J., F. A. Roberge, and A. Vinet. Simulation of two-dimensional anisotropic cardiac reentry: Effects of the wave length on the reentry characteristics. Ann. Biomed. Eng. 22(6):592–609, 1994.

    PubMed  Google Scholar 

  19. Lepran, I., I. Baczko, A. Varro, and J. Papp. ATP-sensitive potassium channel modulators: Both pinacidil and glibenclamide produce antiarrhythmic activity during acute myocardial infarction in conscious rats. Pharmacol. Exp. Ther. 277(3):1215–1220, 1996.

    Google Scholar 

  20. Luo, C. H., and Y. Rudy. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interactions. Circ. Res. 68(6):1501–1526, 1991.

    PubMed  Google Scholar 

  21. Luo, C. H., and Y. Rudy. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74:1071–1096, 1994.

    PubMed  Google Scholar 

  22. Mogul, D. J., D. H. Singer, and R. E. Ten Eick. Dependence of Na–K pump current on internal Na in mammalian cardiac myocytes. Am. J. Physiol. 259:H488–H496, 1990.

    PubMed  Google Scholar 

  23. Nakayama, K., Z. Fan, F. Marumo, and M. Hiraoka. Interrelation between pinacidil and intracellular ATP concentrations on activation of ATP-sensitive K+ current in guinea pig ventricular myocytes. Circ. Res. 67:1124–1133, 1990.

    PubMed  Google Scholar 

  24. Nichols, C., and W. Lederer. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am. J. Physiol. 261:H1675–H1686, 1991.

    PubMed  Google Scholar 

  25. Noma, A. ATP-regulated K channels in cardiac muscle. Nature 305:147–148, 1983.

    Article  PubMed  Google Scholar 

  26. Padrini, R., S. Bova, G. Cargnelli, D. Piovan, and M. Ferrari. Effects of pinacidil on guinea-pig isolated perfused heart with particular reference to the proarrhythmic effect. Br. J. Pharmacol. 105(3):715–719, 1992.

    PubMed  Google Scholar 

  27. Rodríguez, B., J. M. Ferrero Jr., and B. Trénor. Mechanistic investigation of extracellular K+ accumulation during acute myocardial ischemia: A simulation study. Am. J. Physiol. 283(2):H490–H500, 2002.

    Google Scholar 

  28. Shaw, R. M., and Y. Rudy. Electrophysiologic effects of acute myocardial ischemia: A theoretical study of altered cell excitability and action potential duration. Cardiovasc. Res. 35:256–272, 1997.

    PubMed  Google Scholar 

  29. Shaw, R. M., and Y. Rudy. Electrophysiologic effects of acute myocardial ischemia. A mechanistic investigation of action potential conduction and conduction failure. Circ. Res. 80(1):124–138, 1997.

    PubMed  Google Scholar 

  30. Shaw, R. M., and Y. Rudy. Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 81(5):727–741, 1997.

    PubMed  Google Scholar 

  31. Shen, W. K., R. T. Tung, M. M. Machulda, and Y. Kurachi. Essential role of nucleotide diphosphates in nicorandil-mediated activation of cardiac ATP-sensitive K+ channel. A comparison with pinacidil and lemakalim. Circ. Res. 69(4):1152–1158, 1991.

    PubMed  Google Scholar 

  32. Spach, M. S., P. C. Dolber, and J. F. Heidlage. Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation. Circ. Res. 62(4):811–832, 1988.

    PubMed  Google Scholar 

  33. Trénor, B., and J. M. Ferrero Jr. Pinacidil induced block of action potential propagation in ischemic tissue: A simulation study. Proc. Comp. Cardiol. 27:319–322, 2000.

    Google Scholar 

  34. Trénor, B., J. M. Ferrero Jr., B. Rodríguez, J. Sáiz, and N. Thakor. Computer model of the effects of pinacidil on ATP-sensitive potassium current. Proc. XIX Int. Conf. IEEE/EMBS 20:178–181, 1998.

    Google Scholar 

  35. Trénor, B., J. M. Ferrero Jr., B. Rodríguez, V. Torres, J. Saiz, J. M. Ferrero, and N. Thakor. Effects of potassium channel openers nicorandil and pinacidil on electrical activity of cardiac cells and cardiac tissues: A simulation study. Proc. Comp. Cardiol. 26:105–108, 1999.

    Google Scholar 

  36. Watson, C., and M. Gold. Effect of intracellular and extracellular acidosis in ventricular myocytes. Am. J. Physiol. 268:H1749–H1756, 1995.

    PubMed  Google Scholar 

  37. Weiss, J. N., N. Venkatesh, and S. T. Lamp. ATP-sensitive K+ channels and cellular K+ loss in hypoxic and ischemic mammalian ventricle. J. Physiol. (Lond.) 447:649–673, 1992.

    Google Scholar 

  38. Wilde, A. A., and G. Aksnes. Myocardial potassium loss and cell depolarization in ischemia and hypoxia. Cardiovasc. Res. 29(1):1–15, 1995.

    PubMed  Google Scholar 

  39. Wit, A., and J. Janse. The Ventricular Arrhtyhmias of Ischemia and Infarction. Electrophysiological Mechanisms. Mount Kisco, New York, Futura Publishing, 1993.

    Google Scholar 

  40. Wolleben, C., M. Sanguinetti, and P. Siegl. Influence of ATP-sensitive K+ modulators on ischemia induced fibrillation in isolated rat hearts. J. Mol. Cell. Cardiol. 21:783–788, 1989.

    PubMed  Google Scholar 

  41. Zeng, J., K. R. Laurita, D. S. Rosenbaum, and Y. Rudy. Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ. Res. 77:140–152, 1995.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Ferrero Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trénor, B., Ferrero, J.M., Rodríguez, B. et al. Effects of Pinacidil on Reentrant Arrhythmias Generated During Acute Regional Ischemia: A Simulation Study. Ann Biomed Eng 33, 897–906 (2005). https://doi.org/10.1007/s10439-005-3554-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-3554-4

Keywords

Navigation