Skip to main content
Log in

Oscillations in a Simple Microvascular Network

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We have identified the simplest topology that will permit spontaneous oscillations in a model of microvascular blood flow that includes the plasma skimming effect and the Fahraeus–Lindqvist effect and assumes that the flow can be described by a first-order wave equation in blood hematocrit. Our analysis is based on transforming the governing partial differential equations into delay differential equations and analyzing the associated linear stability problem. In doing so we have discovered three dimensionless parameters, which can be used to predict the occurrence of nonlinear oscillations. Two of these parameters are related to the response of the hydraulic resistances in the branches to perturbations. The other parameter is related to the amount of time necessary for the blood to pass through each of the branches. The simple topology used in this study is much simpler than networks found in vivo. However, we believe our analysis will form the basis for understanding more complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azelvandre, F., and C. Oiknine. Fahraeus effect and Fahraeus Lindqvist effect—experimental results and theoretical models. Biorheology 13(6): 325–335, 1976.

    CAS  PubMed  Google Scholar 

  2. Barbee, J. H., and G. R. Cokelet. Prediction of blood flow in tubes with diameters as small as 29 microns. Microvasc. Res. 5:17–21, 1971.

    Article  Google Scholar 

  3. Barclay, K. D., G. A. Klassen, and C. Young. A method for detecting chaos in canine myocardial microcirculatory red cell flux. Microcirculation 7:335–346, 2000.

    Article  CAS  PubMed  Google Scholar 

  4. Biswall, B. B., and A. G. Hudetz. Synchronous oscillations in cerebrocortical capillary red blood cell velocity after nitric oxide synthase inhibition. Microvasc. Res. 52:1–12, 1996.

    Article  PubMed  Google Scholar 

  5. Carr, R. T., and M. LeCoin. Nonlinear dynamics in microvascular networks. Ann. Biomed. Eng. 28:641–652, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Cavalcanti, S., and M. Ursino. Chaotic oscillations in microvessel arterial networks. Ann. Biomed. Eng. 24:37–47, 1996.

    CAS  PubMed  Google Scholar 

  7. Dellimore, J. W., M. J. Dunlop, and P. B. Canham. Ratio of cells and plasma in blood flowing past branches in small plastic channels. Am. J. Physiol. 244:H635–H643, 1983.

    CAS  PubMed  Google Scholar 

  8. Fahraeus, R. Suspension stability of the blood. Physiol. Rev. 9:241–274, 1929.

    Google Scholar 

  9. Fahraeus, R., and T. Lindqvist. The viscosity of blood in narrow capillary tubes. Am. J. Physiol. 96:562–568, 1931.

    CAS  Google Scholar 

  10. Fenton, B. M., R. T. Carr, and G. R. Cokelet. Nonuniform red cell distribution in 20 to 100 μm bifurcations. Microvasc. Res. 29:103–126, 1985.

    Article  CAS  PubMed  Google Scholar 

  11. Fenton, B. M., D. W. Wilson, and G. R. Cokelet. Analysis of the effects of measured white cell entrance times on hemodynamics in a computer model of a microvascular bed. Pflueg. Arch. 403:396–401, 1985.

    Article  CAS  Google Scholar 

  12. Glass, L., and M. C. Mackey. From Clocks to Chaos: The Rhythms of Life. Princeton University Press, NJ, 1988.

    Google Scholar 

  13. Glenny, R. W., N. L. Polissar, S. McKinney, and H. T. Robertson. Temporal heterogeneity of regional pulmonary perfusion is spatially clustered. J. Appl. Physiol. 79:986–1001, 1995.

    CAS  PubMed  Google Scholar 

  14. Johnson, P. C., and H. Wayland. Regulation of blood flow in single capillaries. Am. J. Physiol. 212:1405–1415, 1967.

    CAS  PubMed  Google Scholar 

  15. Kiani, M. F., and A. G. Hudetz. A semiempirical model of apparent blood viscosity as a function of vessel diameter and discharge hematocrit. Biorheology 28:65–73, 1991.

    CAS  PubMed  Google Scholar 

  16. Kiani, M. F., A. R. Pries, L. L. Hsu, I. H. Sarelius, and G. R. Cokelet. Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms. Am. J. Physiol. 266:H1822–H1828, 1994.

    CAS  PubMed  Google Scholar 

  17. Krogh, A. The Anatomy and Physiology of Capillaries. Yale University Press, CT, 1922.

    Google Scholar 

  18. Mollica, F., R. K. Jain, and P. A. Netti. A model for temporal heterogeneities of tumor blood flow. Microvasc. Res. 65:56–60, 2003.

    Article  PubMed  Google Scholar 

  19. Parthimos, D., K. Osterloh, A. R. Pries, and T. M. Griffith. Deterministic nonlinear characteristics of in vivo blood flow velocity and arteriolar diameter fluctuations. Phys. Med. Biol. 49:1789–1802, 2004.

    Article  CAS  PubMed  Google Scholar 

  20. Pries, A. R., K. Ley, and P. Gaehtgens. Red cell distributions at microvascular bifurcations. Microvasc. Res. 38:81–101, 1989.

    Article  CAS  PubMed  Google Scholar 

  21. Pries, A. R., T. W. Secomb, T. Gessner, M. B. Sperandio, J. F. Gross, and P. Gaehtgens. Resistance to blood flow in microvessels in vivo. Circ. Res. 75:904–915, 1994.

    CAS  Google Scholar 

  22. Rodgers, G. P., A. N. Schechter, C. T. Noguchi, H. G. Klein, A. W. Niehuis, and R. F. Bonner. Periodic microcirculatory flow in patients with sickle-cell disease. New England J. Med. 311:1534–1538, 1984.

    CAS  Google Scholar 

  23. Slaaf, D. W., G. J. Tangelder, H. C. Teirlinck, and R. C. Reneman. Arteriolar vasomotion and arterial pressure reduction in rabbit tenissumus muscle. Microvasc. Res. 33:71–80, 1987.

    Article  CAS  PubMed  Google Scholar 

  24. Wiederhielm, C., J. W. Woodbury, S. Kirk, and R. F. Rushmer. Pulsatile pressures in the microcirculation of frog mesentery. Am. J. Physiol. 207:173–176, 1964.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Geddes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, R.T., Geddes, J.B. & Wu, F. Oscillations in a Simple Microvascular Network. Ann Biomed Eng 33, 764–771 (2005). https://doi.org/10.1007/s10439-005-2345-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-2345-2

Keywords

Navigation