Skip to main content
Log in

A modified method considering vortex effect for modelling unsteady cavitating flows

考虑旋涡效应的非定常空化流数值模型修正研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The objective of this study is to propose a modified method for the cavitation model and turbulence model, accounting for the influence of vortex motion on unsteady cavitating flows. A function of the ratio of strain rate tensor and rotation rate tensor is introduced into the Zwart cavitation model and the shear stress transfer (SST) γ-Reθt turbulence model respectively. The modified method is applied to simulate the unsteady cloud cavitating flow around Clark-Y hydrofoil and evaluated by the experimental data. The results show that the modified model can better capture the unsteady process of the cloud cavity, especially the fully developed attached cavity and the large-scale cloud shedding behaviors. These benefit from the increase of turbulent dissipation rate per unit energy and the evaporation rate of the modified method. In addition, the lift coefficient fluctuation in time and the time-averaged u-velocity profiles predicted by the modified model are better agreement with the experimental results.

摘要

本研究的目的是考虑旋涡运动对非定常空化流动的影响, 提出了一种空化模型和湍流模型的修正方法. 在Zwart空化模型和 SST γ-Reθt湍流模型中分别引入了由应变率张量和旋转率张量之比构建的函数. 将该修正方法用于模拟绕Clark-Y水翼的非定常云空化 流动, 并通过与实验数据对比进行评估. 研究结果表明, 修正模型能够更好地捕捉到云空化的非定常过程, 特别是充分发展的附着空穴 和大尺度的云空泡脱落行为. 这都得益于修正方法中单位能量的湍流耗散率和蒸发率的提高. 此外, 修正模型所预测的升力系数随时 间的波动和时均流向速度分布与实验结果有较好的一致性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. A. Arndt, Cavitation in fluid machinery and hydraulic structures, Annu. Rev. Fluid Mech. 13, 273 (1981).

    Article  Google Scholar 

  2. J. P. Franc, and J. M. Michel, Fundamentals of Cavitation (Springer, Netherlands, 2005).

    Book  MATH  Google Scholar 

  3. B. Ji, H. Y. Cheng, B. Huang, X. W. Luo, X. X. Peng, and X. P. Long, Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation, Adv. Mech. 49, 201906 (2019).

    Google Scholar 

  4. Q. Guo, L. Zhou, Z. Wang, M. Liu, and H. Cheng, Numerical simulation for the tip leakage vortex cavitation, Ocean Eng. 151, 71 (2018).

    Article  Google Scholar 

  5. R. E. A. Arndt, Cavitation in vortical flows, Annu. Rev. Fluid Mech. 34, 143 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Tian, J. Chen, X. Zhao, M. Zhang, and B. Huang, Numerical analysis of interaction between turbulent structures and transient sheet/cloud cavitation, Phys. Fluids 34, 047116 (2022).

    Article  Google Scholar 

  7. A. Kubota, H. Kato, H. Yamaguchi, and M. Maeda, Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique, J. Fluids Eng. 111, 204 (1989).

    Article  Google Scholar 

  8. N. Dittakavi, A. Chunekar, and S. Frankel, Large eddy simulation of turbulent-cavitation interactions in a venturi nozzle, J. Fluids Eng. 132, 121301 (2010).

    Article  Google Scholar 

  9. T. Ohta, and R. Sugiura, Numerical prediction of interaction between turbulence structures and vortex cavitation, J. Turbul. 20, 599 (2019).

    Article  MathSciNet  Google Scholar 

  10. B. Ji, X. Luo, R. E. A. Arndt, and Y. Wu, Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction, Ocean Eng. 87, 64 (2014).

    Article  Google Scholar 

  11. C. Han, S. Xu, H. Cheng, B. Ji, and Z. Zhang, LES method of the tip clearance vortex cavitation in a propelling pump with special emphasis on the cavitation-vortex interaction, J. Hydrodyn. 32, 1212 (2020).

    Article  Google Scholar 

  12. P. Ausoni, M. Farhat, X. Escaler, E. Egusquiza, and F. Avellan, Cavitation influence on von Kármán vortex shedding and induced hydrofoil vibrations, J. Fluids Eng. 129, 966 (2007).

    Article  Google Scholar 

  13. B. Huang, Y. Zhao, and G. Wang, Large Eddy Simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows, Comput. Fluids 92, 113 (2014).

    Article  MATH  Google Scholar 

  14. J. Chen, B. Huang, T. Liu, Y. Wang, and G. Wang, Numerical investigation of cavitation-vortex interaction with special emphasis on the multistage shedding process, Appl. Math. Model. 96, 111 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Katz, and T. J. O’Hern, Cavitation in large scale shear flows, J. Fluids Eng. 108, 373 (1986).

    Article  Google Scholar 

  16. I. Avrahami, M. Rosenfeld, S. Einav, M. Eichler, and H. Reul, Can vortices in the flow across mechanical heart valves contribute to cavitation? Med. Biol. Eng. Comput. 38, 93 (2000).

    Article  Google Scholar 

  17. M. Altimira, and L. Fuchs, Numerical investigation of throttle flow under cavitating conditions, Int. J. Multiphase Flow 75, 124 (2015).

    Article  MathSciNet  Google Scholar 

  18. M. Liu, L. Tan, and S. Cao, Cavitation-vortex-turbulence interaction and one-dimensional model prediction of pressure for hydrofoil ALE15 by large eddy simulation, J. Fluids Eng. 141, 021103 (2019).

    Article  Google Scholar 

  19. M. G. D Giorgi, A. Ficarella, and D. Fontanarosa, in Active control of unsteady cavitating flows in turbomachinery: Proceedings of ASME Turbo Expo 2019, Turbomachinery Technical Conference and Exposition, Phoenix, 2019.

  20. G. Wang, and M. Ostoja-Starzewski, Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil, Appl. Math. Model. 31, 417 (2007).

    Article  MATH  Google Scholar 

  21. B. Ji, X. Luo, Y. Wu, X. Peng, and H. Xu, Partially-Averaged Navier—Stokes method with modified k-ε model for cavitating flow around a marine propeller in a non-uniform wake, Int. J. Heat Mass Transfer 55, 6582 (2012).

    Article  Google Scholar 

  22. P. K. Ullas, D. Chatterjee, and S. Vengadesan, Prediction of unsteady, internal turbulent cavitating flow using dynamic cavitation model, Int. J. Numer. Meth. Heat Fluid Flow 32, 3210 (2022).

    Article  Google Scholar 

  23. X. Long, H. Cheng, B. Ji, R. E. A. Arndt, and X. Peng, Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil, Int. J. Multiphase Flow 100, 41 (2018).

    Article  MathSciNet  Google Scholar 

  24. Y. Long, X. Long, B. Ji, and T. Xing, Verification and validation of large eddy simulation of attached cavitating flow around a Clark-Y hydrofoil, Int. J. Multiphase Flow 115, 93 (2019).

    Article  MathSciNet  Google Scholar 

  25. Z. Wang, H. Cheng, and B. Ji, Euler-Lagrange study of cavitating turbulent flow around a hydrofoil, Phys. Fluids 33, 112108 (2021).

    Article  Google Scholar 

  26. A. Yu, W. Feng, and Q. Tang, Large Eddy Simulation of the cavitating flow around a Clark-Y mini cascade with an insight on the cavitation-vortex interaction, Ocean Eng. 266, 112852 (2022).

    Article  Google Scholar 

  27. X. Wang, and S. Thangam, Development and application of an anisotropic two-equation model for flows with swirl and curvature, J. Appl. Mech. 73, 397 (2006).

    Article  MATH  Google Scholar 

  28. P. R. Spalart, and M. Shur, On the sensitization of turbulence models to rotation and curvature, Aerosp. Sci. Tech. 1, 297 (1997).

    Article  MATH  Google Scholar 

  29. P. E. Smirnov, and F. R. Menter, Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term, J. Turbomach. 131, 041010 (2009).

    Article  Google Scholar 

  30. Y. Zhao, G. Y. Wang, and B. Huang, Applications of LSC turbulence model on unsteady cavitating flows, Chin. J. Appl. Mech. 31, 1 (2014).

    Google Scholar 

  31. D. Y. Zhang, X. L. Li, Y. Yang, and Q. Zhang, Application of k-ω with Pω enhancer turbulence model to delta wing vortical flows, Acta Aerodyn. Sin. 34, 461 (2016).

    Google Scholar 

  32. W. Ye, Y. Yi, and X. Luo, Numerical modeling of unsteady cavitating flow over a hydrofoil with consideration of surface curvature, Ocean Eng. 205, 107305 (2020).

    Article  Google Scholar 

  33. Q. Guo, Study on Characteristics of the Blade Tip Leakage Vortex Flow and the Cavitating Flow Field (in Chinese), Dissertation for Doctoral Degree (China Agricultural University, Beijing, 2017).

    Google Scholar 

  34. A. D. Le, and H. T. Tran, Improvement of mass transfer rate modeling for prediction of cavitating flow, J. Appl. Fluid Mech. 15, 551 (2022).

    Google Scholar 

  35. Y. Saito, R. Takami, I. Nakamori, and T. Ikohagi, Numerical analysis of unsteady behavior of cloud cavitation around a NACA0015 foil, Comput. Mech. 40, 85 (2007).

    Article  MATH  Google Scholar 

  36. Y. Zhao, G. Wang, and B. Huang, A cavitation model for computations of unsteady cavitating flows, Acta Mech. Sin. 32, 273 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Cheng, X. Long, B. Ji, X. Peng, and M. Farhat, A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas, Int. J. Multiphase Flow 134, 103441 (2021).

    Article  MathSciNet  Google Scholar 

  38. P. J. Zwart, A. G. Gerber, and T. Belamri, in A two-phase flow model for predicting cavitation dynamics: Proceedings of International Conference on Multiphase Flow, Yokohama, 2004.

  39. F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Volker, A correlation-based transition model using local variables—part I: Model formulation, J. Turbomach. 128, 413 (2006).

    Article  Google Scholar 

  40. F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32, 1598 (1994).

    Article  Google Scholar 

  41. D. C. Wilcox, Reassessment of the scale-determining equation for advanced turbulence models, AIAA J. 26, 1299 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Huang, and G. Y. Wang, Experimental and numerical investigation of unsteady cavitating flows through a 2D hydrofoil, Sci. China Tech. Sci. 54, 1801 (2011).

    Article  MATH  Google Scholar 

  43. C. L. Hu, G. Y. Wang, G. H. Chen, and B. Huang, A modified PANS model for computations of unsteady turbulence cavitating flows, Sci. China-Phys. Mech. Astron. 57, 1967 (2014).

    Article  Google Scholar 

  44. G. Wang, I. Senocak, W. Shyy, T. Ikohagi, and S. Cao, Dynamics of attached turbulent cavitating flows, Prog. Aerosp. Sci. 37, 551 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52076108).

Author information

Authors and Affiliations

Authors

Contributions

Bojie Hong established the numerical method, made reasonable analysis and wrote the first draft of the manuscript. Changli Hu set the overall research goals, supervised the research activity execution and the final version revision. Haojie Xing helped process data and organize the manuscript.

Corresponding author

Correspondence to Changli Hu  (胡常莉).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, B., Hu, C. & Xing, H. A modified method considering vortex effect for modelling unsteady cavitating flows. Acta Mech. Sin. 39, 322399 (2023). https://doi.org/10.1007/s10409-022-22399-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22399-x

Navigation