Skip to main content
Log in

Computational scaling of SPH simulations for violent sloshing problems in aircraft fuel tanks

基于计算缩放的光滑粒子水动力学方法模拟飞机油箱剧烈晃动 问题

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The wings of large civilian aircraft are designed to withstand a variety of loads whose causes range from atmospheric gusts to turbulence to landing impacts. Aircraft wings are essential structures that demand further research. One of the primary methods used for improving wing design is analysis of the damping effects that sloshing induces on the dynamics of flexible wing-like structures carrying liquids. This will be attained through the development of experimental set-ups that will help in building up numerical models that are used to reproduce the physics involved. Hence, the aim of this work is to analyze the effect of sloshing in reducing the design loads on aircraft structures using the numerical method smoothed particle hydrodynamics (SPH) as the main numerical tool. One of the key considerations in this research is the demand for scaled experiments, making it a necessary step in assessing whether computational tools are able to approximate the registered measurements for different scales accurately. To this end, a numerical model of a vertically oscillating tank built as a fully coupled fluid-structure interaction problem is developed. The structure is modelled through a mass-spring-damper system, and for the inner fluid the δ-SPH methodology is used. In particular, two open questions are studied: the first one is to what extent gravity has an influence on the damping and energy dissipation phenomena when the initial acceleration of the tank is ten times the standard gravity value. The second seeks to confirm that the SPH equations correctly reproduce the scaling laws when the problem parameters are scaled according to the dimensional analysis.

摘要

大型民用飞机的机翼设计用于承受从大气阵风到湍流到着陆冲击的各种载荷, 机翼是需要进一步研究的重要结构. 改进机翼 设计的主要方法之一是分析晃动对承载液体的柔性机翼状结构动力学的阻尼效应. 这将通过开发实验装置来实现, 该装置将有助于建 立和再现涉及物理领域的数值模型. 因此, 本工作的目的是使用数值方法光滑粒子流体动力学(SPH)作为主要数值工具, 分析晃动在降 低飞机结构设计载荷方面的影响. 本研究中的一个关键因素是对比例实验的需求, 这是评估计算工具是否能够准确近似不同比例的注 册测量值的必要步骤. 为此,建立了一个垂直振动水槽的数值模型, 该模型是一个完全耦合的流固耦合问题. 该结构通过质量-弹簧-阻 尼器系统建模, 对于内部流体, 使用δ-SPH方法. 特别是, 研究了两个开放性问题: 第一个问题是, 当储罐的初始加速度是标准重力值的 十倍时, 重力对阻尼和能量耗散现象的影响程度; 第二种问题旨在确认, 当根据量纲分析对问题参数进行缩放时, SPH方程正确地再现 了缩放定律.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bulian, A. Souto-Iglesias, L. Delorme, and E. Botia-Vera, Smoothed particle hydrodynamics (SPH) simulation of a tuned liquid damper, J. Hydraulic Res. 48, 28 (2010).

    Article  Google Scholar 

  2. M. J. Tait, Modelling and preliminary design of a structure-TLD system, Eng. Struct. 30, 2644 (2008).

    Article  Google Scholar 

  3. A. Souto Iglesias, L. Pérez Rojas, and R. Zamora Rodríguez, Simulation of anti-roll tanks and sloshing type problems with smoothed particle hydrodynamics, Ocean Eng. 31, 1169 (2004).

    Article  Google Scholar 

  4. A. Souto-Iglesias, L. Delorme, L. Pérez-Rojas, and S. Abril-Pérez, Liquid moment amplitude assessment in sloshing type problems with smooth particle hydrodynamics, Ocean Eng. 33, 1462 (2006).

    Article  Google Scholar 

  5. T. O. Arndt, and M. E. Dreyer, Damping behavior of sloshing liquid in laterally excited cylindrical propellant vessels, J. Spacecraft Rockets 45, 1085 (2008).

    Article  Google Scholar 

  6. F. Gambioli, in Fuels loads in large civil airplanes: Proceedings of 4th ERCOFTAC SPHERIC workshop on SPH applications, Nantes, 2009.

  7. P. A. Tyvand, and T. Miloh, Incompressible impulsive sloshing, J. Fluid Mech. 708, 279 (2012).

    Article  MathSciNet  Google Scholar 

  8. L. Constantin, J. De Courcy, B. Titurus, T. C. S. Rendall, and J. E. Cooper, Analysis of damping from vertical sloshing in a SDOF system, Mech. Syst. Signal Process. 152, 107452 (2021).

    Article  Google Scholar 

  9. B. Bouscasse, A. Colagrossi, A. Souto-Iglesias, and J. L. Cercos-Pita, Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. I. Theoretical formulation and numerical investigation, Phys. Fluids 26, 033103 (2014), arXiv: 1307.6064.

    Article  Google Scholar 

  10. B. Bouscasse, A. Colagrossi, A. Souto-Iglesias, and J. L. Cercos-Pita, Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. II. Experimental investigation, Phys. Fluids 26, 033104 (2014), arXiv: 1307.6063.

    Article  Google Scholar 

  11. J. Calderon-Sanchez, J. Martinez-Carrascal, L. M. Gonzalez-Gutierrez, and A. Colagrossi, A global analysis of a coupled violent vertical sloshing problem using an SPH methodology, Eng. Appl. Comput. Fluid Mech. 15, 865 (2021).

    Google Scholar 

  12. S. Marrone, A. Colagrossi, M. Antuono, C. Lugni, and M. P. Tulin, A 2D+t SPH model to study the breaking wave pattern generated by fast ships, J. Fluids Struct. 27, 1199 (2011).

    Article  Google Scholar 

  13. W. T. Liu, P. N. Sun, F. R. Ming, and A. M. Zhang, Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH, Acta Mech. Sin. 34, 601 (2018).

    Article  MathSciNet  Google Scholar 

  14. P. N. Sun, A. Colagrossi, S. Marrone, M. Antuono, and A. M. Zhang, A consistent approach to particle shifting in the δ-Plus-SPH model, Comput. Methods Appl. Mech. Eng. 348, 912 (2019).

    Article  MathSciNet  Google Scholar 

  15. J. Calderon-Sanchez, J. L. Cercos-Pita, and D. Duque, A geometric formulation of the Shepard renormalization factor, Comput. Fluids 183, 16 (2019).

    Article  MathSciNet  Google Scholar 

  16. S. Marrone, A. Colagrossi, F. Gambioli, and L. González-Gutiérrez, Numerical study on the dissipation mechanisms in sloshing flows induced by violent and high-frequency accelerations. I. Theoretical formulation and numerical investigation, Phys. Rev. Fluids 6, 114801 (2021).

    Article  Google Scholar 

  17. S. Marrone, A. Colagrossi, J. Calderon-Sanchez, and J. Martinez-Carrascal, Numerical study on the dissipation mechanisms in sloshing flows induced by violent and high-frequency accelerations. II. Comparison against experimental data, Phys. Rev. Fluids 6, 114802 (2021).

    Article  Google Scholar 

  18. J. Martinez-Carrascal, and L. M. González-Gutiérrez, Experimental study of the liquid damping effects on a SDOF vertical sloshing tank, J. Fluids Struct. 100, 103172 (2021).

    Article  Google Scholar 

  19. M. Wright, F. Gambioli, and A. Malan, in A non-dimensional characterization of structural vibration induced vertical slosh induced damping: Proceedings of the 31st International Ocean and Polar Engineering Conference, Rhodes, 2021.

  20. J. E. Cooper, P. R. Emmett, J. R. Wright, and M. J. Schofield, Envelope function — A tool for analyzing flutter data, J. Aircraft 30, 785 (1993).

    Article  Google Scholar 

  21. M. Antuono, A. Colagrossi, and S. Marrone, Numerical diffusive terms in weakly-compressible SPH schemes, Comput. Phys. Commun. 183, 2570 (2012).

    Article  MathSciNet  Google Scholar 

  22. P. W. Randles, and L. D. Libersky, Smoothed Particle Hydrodynamics: Some recent improvements and applications, Comput. Methods Appl. Mech. Eng. 139, 375 (1996).

    Article  MathSciNet  Google Scholar 

  23. A. Di Mascio, M. Antuono, A. Colagrossi, and S. Marrone, Smoothed particle hydrodynamics method from a large eddy simulation perspective, Phys. Fluids 29, 035102 (2017).

    Article  Google Scholar 

  24. J. P. Morris, Simulating surface tension with smoothed particle hydrodynamics, Int. J. Numer. Meth. Fluids 33, 333 (2000).

    Article  Google Scholar 

  25. J. L. Cercos-Pita, AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL, Comput. Phys. Commun. 192, 295 (2015).

    Article  MathSciNet  Google Scholar 

  26. J. Michel, A. Vergnaud, G. Oger, C. Hermange, and D. Le Touzé, On Particle Shifting Techniques (PSTs): Analysis of existing laws and proposition of a convergent and multi-invariant law, J. Comput. Phys. 459, 110999 (2022).

    Article  MathSciNet  Google Scholar 

  27. A. Vergnaud, G. Oger, D. Le Touzé, M. DeLeffe, and L. Chiron, C-CSF: Accurate, robust and efficient surface tension and contact angle models for single-phase flows using SPH, Comput. Methods Appl. Mech. Eng. 389, 114292 (2022).

    Article  MathSciNet  Google Scholar 

  28. L. Chiron, M. de Leffe, G. Oger, and D. Le Touzé, Fast and accurate SPH modelling of 3D complex wall boundaries in viscous and non viscous flows, Comput. Phys. Commun. 234, 93 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by European Union (EU) (Grant No. H2020-815044) “Sloshing Wing Dynamics (SLOWD)”. The authors also acknowledge the financial support from the Spanish Ministry for Science, Innovation and Universities (MCIU) (Grant No. RTI2018-096791-B-C21) “Hidrodinámica de elementos de amortiguamiento del movimiento de aerogeneradores flotantes”. This research has also received funding from Universidad Politécnica de Madrid under a pre-doctoral scholarship. All the authors would like to thank Mr. Ciaran Stone for his valuable assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calderon-Sanchez Javier.

Additional information

Author contributions

Javier Calderon-Sanchez did the numerical model development and implementation, and also assisted in the writing and editing process. Jon Martinez-Carrascal carried out the testing and validation of the implemented code and analysed, processed and prepared the data obtained that is shown in the present work. Additionally, contributed to the writing and editing process. Leo Miguel González formulated the original idea, helped in the development and testing of the models and is responsible for the first draft. He participated in the revision and editing process as the manuscript evolved. He has been in charge of the funding acquisition process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javier, CS., Jon, MC. & Miguel, G.L. Computational scaling of SPH simulations for violent sloshing problems in aircraft fuel tanks. Acta Mech. Sin. 39, 722051 (2023). https://doi.org/10.1007/s10409-022-22051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22051-x

Keywords

Navigation