Skip to main content
Log in

Equivalent continuum modeling of beam-like truss structures with flexible joints

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints, which models the contact between the truss member and joint by spring-damper with six directional stiffnesses and dampings. Firstly, a two-node hybrid joint-beam element was derived for modeling the truss member with flexible end joints, and a condensed model for the repeating element with flexible joints was obtained. Then, the energy equivalence method was adopted to equivalently model the truss structure with flexible joints and material damping as a spatial viscoelastic anisotropic beam model. Afterwards, the equations of motion for the equivalent beam model were derived and solved analytically in the frequency domain. In the numerical studies, the correctness of the presented method was verified by comparisons of the natural frequencies and frequency responses evaluated by the equivalent beam model with the results of the finite element method model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma, G.L., Gao, B., Xu, M.L., et al.: Active suspension method and active vibration control of a hoop truss structure. AIAA J. 56(4), 1689–1695 (2018)

    Article  Google Scholar 

  2. Guo, H.W., Shi, C., Li, M., et al.: Design and dynamic equivalent modeling of double-layer hoop deployable antenna. Int. J. Aerosp. Eng. 2018, 2941981-1-15 (2018)

    Google Scholar 

  3. Folkman, S.L., Rowsell, E.A., Ferney, G.D.: Influence of pinned joints on damping and dynamic behavior of a truss. J. Guid. Control Dyn. 18(6), 1398–1403 (1995)

    Article  Google Scholar 

  4. Crawley, E.F.: Nonlinear characteristics of joints as elements of multi-body dynamic systems. NASA Technical Reports. N89-24668 (1989)

  5. Bowden, M., Dugundji, J.: Joint damping and nonlinearity in dynamics of space structures. AIAA J. 28(4), 740–749 (1990)

    Article  Google Scholar 

  6. Gummer, A., Sauer, B.: Influence of contact geometry on local friction energy and stiffness of revolute joints. J. Tribol. Trans. ASME 134, 021402-1-9 (2012)

    Article  Google Scholar 

  7. Wang, Z.C., Xin, Y., Ren, W.X.: Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses. Mech. Syst. Signal Process. 76–77, 476–496 (2016)

    Article  Google Scholar 

  8. Tan, G.E.B., Pellegrino, S.: Nonlinear vibration of cable-stiffened pantographic deployable structures. J. Sound Vib. 314, 783–802 (2008)

    Article  Google Scholar 

  9. Quinn, D.D.: Modal analysis of jointed structures. J. Sound Vib. 331, 81–93 (2012)

    Article  Google Scholar 

  10. Li, Y., Wang, Z., Wang, C., et al.: Effects of torque spring, CCL and latch mechanism on dynamic response of planar solar arrays with multiple clearance joints. Acta Astronaut. 132, 243–255 (2017)

    Article  Google Scholar 

  11. Lamberson, S.E., Yang, T.Y.: Continuum plate finite elements for vibration analysis and feedback control of space lattice structures. Comput. Struct. 20(1–3), 583–592 (1985)

    Article  Google Scholar 

  12. Salehian, A., Inman, D.J.: Dynamic analysis of a lattice structure by homogenization: experimental validation. J. Sound Vib. 316, 180–197 (2008)

    Article  Google Scholar 

  13. Noor, A.K.: Continuum modeling for repetitive lattice structures. Appl. Mech. Rev. 41(7), 285–296 (1988)

    Article  Google Scholar 

  14. Necib, B., Sun, C.T.: Analysis of truss beams using a high order Timoshenko beam finite element. J. Sound Vib. 130, 149–159 (1989)

    Article  Google Scholar 

  15. Zhang, W., Chen, J., Sun, Y.: Nonlinear breathing vibrations and chaos of a circular truss antenna with 1:2 internal resonance. Int. J. Bifurc. Chaos 26(5), 1650077-1-33 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Noor, A.K., Nemeth, M.P.: Micropolar beam models for lattice grids with rigid joints. Comput. Methods Appl. Mech. Eng. 21(2), 249–263 (1980)

    Article  Google Scholar 

  17. Burgardt, B., Cartraud, P.: Continuum modeling of beamlike lattice trusses using averaging methods. Comput. Struct. 73, 267–279 (1999)

    Article  Google Scholar 

  18. Salehian, A., Ibrahim, M., Seigler, T.M.: Damping in periodic structures: a continuum modeling approach. AIAA J. 52(3), 569–590 (2014)

    Article  Google Scholar 

  19. Liu, F.S., Jin, D.P., Wen, H.: Equivalent dynamic model for hoop truss structure composed of planar repeating elements. AIAA J. 55(3), 1058–1063 (2017)

    Article  Google Scholar 

  20. Tollenaere, H., Caillerie, D.: Continuous modeling of lattice structures by homogenization. Adv. Eng. Softw. 29(7–9), 699–705 (1998)

    Article  Google Scholar 

  21. Reis, F.D., Ganghoffer, J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112–113, 354–363 (2012)

    Article  Google Scholar 

  22. Reda, H., Ganghoffer, J.F., Lakiss, H.: Micropolar dissipative models for the analysis of 2D dispersive waves in periodic lattices. J. Sound Vib. 392, 325–345 (2017)

    Article  Google Scholar 

  23. Webster, M.S.: Modeling Beam-Like Space Truss with Nonlinear Joints with Application to Control. [Ph.D. Thesis], Massachusetts Institute of Technology, Cambridge (1983)

  24. Zhang, J., Deng, Z.Q., Guo, H.W., et al.: Equivalence and dynamic analysis for jointed trusses based on improved finite elements. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 228(1), 47–61 (2014)

    Google Scholar 

  25. Salehian, A., Inman, D.J.: A reduced order micro-polar model of a space antenna with torsional joints. In: Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, USA, April 7–10 (2008)

  26. Salehian, A., Inman, D.J.: Micropolar continuous modeling and frequency response validation of a lattice structure. J. Vib. Acoust. 132(1), 256–280 (2010)

    Article  Google Scholar 

  27. Sekulovic, M., Salatic, R., Nefovska, M.: Dynamic analysis of steel frames with flexible connections. Comput. Struct. 80, 935–955 (2002)

    Article  Google Scholar 

  28. Sekulovic, M., Salatic, R.: Nonlinear analysis of frames with flexible connections. Comput. Struct. 79, 1097–1107 (2001)

    Article  Google Scholar 

  29. Bennett, W.H., Kwatny, H.G.: Continuum modeling of flexible structures with application to vibration control. AIAA J. 7(9), 1264–1273 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11702146, 11732006 and 11827801) and the Equipment Pre-research Foundation (Grant 6140210010202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongping Jin.

Appendix

Appendix

The correction matrix G in Eq. (9) is

$$ \varvec{G} = \left[ {\begin{array}{*{20}c} {g_{11} } & 0 & 0 & 0 & 0 & 0 & { - g_{11} } & 0 & 0 & 0 & 0 & 0 \\ 0 & {g_{22} } & 0 & 0 & 0 & {g_{26} } & 0 & { - g_{22} } & 0 & 0 & 0 & {g_{212} } \\ 0 & 0 & {g_{33} } & 0 & {g_{35} } & 0 & 0 & 0 & { - g_{33} } & 0 & {g_{311} } & 0 \\ 0 & 0 & 0 & {g_{44} } & 0 & 0 & 0 & 0 & 0 & { - g_{44} } & 0 & 0 \\ 0 & 0 & {g_{53} } & 0 & {g_{55} } & 0 & 0 & 0 & { - g_{53} } & 0 & {g_{511} } & 0 \\ 0 & {g_{62} } & 0 & 0 & 0 & {g_{66} } & 0 & { - g_{62} } & 0 & 0 & 0 & {g_{612} } \\ { - g_{77} } & 0 & 0 & 0 & 0 & 0 & {g_{77} } & 0 & 0 & 0 & 0 & 0 \\ 0 & { - g_{88} } & 0 & 0 & 0 & {g_{86} } & 0 & {g_{88} } & 0 & 0 & 0 & {g_{812} } \\ 0 & 0 & { - g_{99} } & 0 & {g_{95} } & 0 & 0 & 0 & {g_{99} } & 0 & {g_{911} } & 0 \\ 0 & 0 & 0 & { - g_{1010} } & 0 & 0 & 0 & 0 & 0 & {g_{1010} } & 0 & 0 \\ 0 & 0 & { - g_{119} } & 0 & {g_{115} } & 0 & 0 & 0 & {g_{119} } & 0 & {g_{1111} } & 0 \\ 0 & { - g_{128} } & 0 & 0 & 0 & {g_{126} } & 0 & {g_{128} } & 0 & 0 & 0 & {g_{1212} } \\ \end{array} } \right] $$

with

$$ g_{11} = - \frac{{{\mkern 1mu} p_{uxi} }}{{1 + p_{uxi} + {\mkern 1mu} p_{uxj} }},g_{22} {\mkern 1mu} {\mkern 1mu} = - \frac{{12p_{uyi} }}{{\varDelta_{2} }}(1 + p_{\theta zi} + p_{\theta zj} ), $$
$$ g_{26} {\mkern 1mu} {\mkern 1mu} = \frac{{L_{m} }}{{\varDelta_{2} }}\left[ {(1 + 4p_{\theta zi} + 4p_{\theta zj} + 12p_{\theta zi} {\mkern 1mu} p_{\theta zj} {\mkern 1mu} )\tilde{e}_{1} {\mkern 1mu} } \right. + 12p_{uyj} ({\mkern 1mu} 1 + p_{\theta zi} + p_{\theta zj} )\tilde{e}_{1} \left. { - 6p_{uyi} (1 + 2p_{\theta zj} )} \right], $$
$$ g_{212} {\mkern 1mu} {\mkern 1mu} = - {\mkern 1mu} \frac{{6p_{{uyi{\mkern 1mu} }} L_{m} }}{{\varDelta_{2} }}\left[ {2{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \tilde{e}_{2} (1 + p_{\theta zi} + p_{\theta zj} ) + 2p_{\theta zi} + 1} \right], $$
$$ g_{33} = - \frac{{12p_{uzi} }}{{\varDelta_{3} }}(1 + {\mkern 1mu} p_{\theta yi} + {\mkern 1mu} p_{\theta yj} ), $$
$$\begin{aligned} g_{35} {\mkern 1mu} {\mkern 1mu} &= - \frac{{L_{m} }}{{\varDelta_{3} }}\left[ {(1 + 4p_{\theta yi} + 4p_{\theta yj} + 12p_{\theta yi} p_{\theta yj} )\tilde{e}_{1} {\mkern 1mu} }\right.\\ & \quad \left.{+ 12p_{uzj} {\mkern 1mu} ({\mkern 1mu} {\mkern 1mu} 1 + p_{\theta yi} + {\mkern 1mu} p_{\theta yj} )\tilde{e}_{1} {\mkern 1mu} - 6p_{uzi} (1 + 2p_{\theta yj} )} \right], \end{aligned}$$
$$ g_{311} {\mkern 1mu} {\mkern 1mu} = {\mkern 1mu} \frac{{6p_{{uzi{\mkern 1mu} }} L_{m} }}{{\varDelta_{2} }}\left[ {2{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \tilde{e}_{2} (1 + p_{\theta yi} + p_{\theta yj} ) + 2p_{\theta yi} + 1} \right], $$
$$ g_{44} = - \frac{{{\mkern 1mu} p_{\theta xi} }}{{1 + {\mkern 1mu} p_{\theta xi} + p_{\theta xj} }}, $$
$$ \begin{aligned} g_{53} {\mkern 1mu} {\mkern 1mu} &= \frac{{6{\mkern 1mu} }}{{\varDelta_{3} L_{m} }}(p_{\theta yi} + 2p_{\theta yi} p_{\theta yj} ), \\ g_{55} {\mkern 1mu} {\mkern 1mu} & = - \frac{{2p_{\theta yi} }}{{\varDelta_{3} }}\left[ {{\mkern 1mu} {\mkern 1mu} 3{\mkern 1mu} \tilde{e}_{1} ({\mkern 1mu} {\mkern 1mu} 1 + 2p_{\theta yj} ){\mkern 1mu} + {\mkern 1mu} 6({\mkern 1mu} p_{uzi} + p_{uzj} + {\mkern 1mu} {\mkern 1mu} p_{\theta yj} ){\mkern 1mu} + 2} \right],\end{aligned} $$
$$ g_{511} {\mkern 1mu} {\mkern 1mu} = - \frac{{2p_{\theta yi} }}{{\varDelta_{3} }}\left[ {3{\mkern 1mu} \tilde{e}_{2} + 6{\mkern 1mu} {\mkern 1mu} \tilde{e}_{2} {\mkern 1mu} p_{\theta yj} + 1 - 6p_{uzi} - {\mkern 1mu} 6{\mkern 1mu} p_{{uzj{\mkern 1mu} }} } \right], $$
$$\begin{aligned} g_{62} {\mkern 1mu} {\mkern 1mu}& = - \frac{{6{\mkern 1mu} }}{{\varDelta_{2} L_{m} }}(p_{\theta zi} + 2p_{\theta zi} p_{\theta zj} ),\,\\ g_{66} {\mkern 1mu} {\mkern 1mu} &= - \frac{{2p_{\theta zi} }}{{\varDelta_{2} }}\left[ {{\mkern 1mu} 3{\mkern 1mu} \tilde{e}_{1} ({\mkern 1mu} 1 + 2p_{\theta zj} ){\mkern 1mu} + {\mkern 1mu} {\mkern 1mu} 6({\mkern 1mu} {\mkern 1mu} {\mkern 1mu} p_{uyi} {\mkern 1mu} + {\mkern 1mu} {\mkern 1mu} p_{uyj} + {\mkern 1mu} {\mkern 1mu} p_{\theta zj} ) + 2} \right], \end{aligned}$$
$$ g_{612} {\mkern 1mu} {\mkern 1mu} = - \frac{{2p_{\theta zi} }}{{\varDelta_{2} }}\left[ {3{\mkern 1mu} \tilde{e}_{2} ({\mkern 1mu} 1 + 2{\mkern 1mu} p_{\theta zj} ) - {\mkern 1mu} 6{\mkern 1mu} (p_{uyi} + p_{{uyj{\mkern 1mu} }} ) + 1} \right], $$
$$ g_{77} = - \frac{{{\mkern 1mu} p_{uxj} }}{{1 + p_{uxi} + {\mkern 1mu} p_{uxj} }}, $$
$$ \begin{aligned} g_{86} {\mkern 1mu} {\mkern 1mu} & = {\mkern 1mu} \frac{{6p_{{uyj{\mkern 1mu} }} L_{m} }}{{\varDelta_{2} }}\left[ {2{\mkern 1mu} {\mkern 1mu} \tilde{e}_{1} (1 + p_{\theta zi} + p_{\theta zj} ) + 2p_{\theta zj} + 1} \right],\\ g_{88} {\mkern 1mu} {\mkern 1mu} & = - \frac{{12p_{uyj} }}{{\varDelta_{2} }}(1 + p_{\theta zi} + p_{\theta zj} ),\end{aligned} $$
$$\begin{aligned} g_{812} {\mkern 1mu} {\mkern 1mu} &= - \frac{{L_{m} }}{{\varDelta_{2} }}\left[ {(1 + 4p_{\theta zi} + 4p_{\theta zj} }\right.\\ & \quad \left.{+ 12p_{\theta zi} {\mkern 1mu} p_{\theta zj} {\mkern 1mu} )\tilde{e}_{2} + 12p_{uyi} (1 + {\mkern 1mu} p_{\theta zi} + p_{\theta zj} ){\mkern 1mu} \tilde{e}_{2} } \right. \\ & \quad \left. { -\, 6p_{uyj} (1 + 2p_{\theta zi} )} \right], \end{aligned}$$
$$\begin{aligned} g_{95} {\mkern 1mu} {\mkern 1mu} &= - {\mkern 1mu} \frac{{6p_{{uzj{\mkern 1mu} }} L_{m} }}{{\varDelta_{2} }}\left[ {2{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \tilde{e}_{1} (1 + p_{\theta yi} + p_{\theta yj} ) + 2p_{\theta yj} + 1} \right],\,\\ g_{99} &= - \frac{{12p_{uzj} }}{{\varDelta_{3} }}(1 + {\mkern 1mu} p_{\theta yi} + {\mkern 1mu} p_{\theta yj} ), \end{aligned}$$
$$\begin{aligned} g_{911} {\mkern 1mu} {\mkern 1mu} &= \frac{{L_{m} }}{{\varDelta_{3} }}\left[ {(1 + 4p_{\theta yi} + 4p_{\theta yj} + 12p_{\theta yi} p_{\theta yj} )\tilde{e}_{2} {\mkern 1mu} }\right. \\ & \quad \left.{+ 12p_{uzi} {\mkern 1mu} ({\mkern 1mu} {\mkern 1mu} 1 + p_{\theta yi} + {\mkern 1mu} p_{\theta yj} )\tilde{e}_{2} {\mkern 1mu} - 6p_{uzj} (1 + 2p_{\theta yi} )} \right], \end{aligned}$$
$$ g_{1010} = - \frac{{{\mkern 1mu} p_{\theta xj} }}{{1 + {\mkern 1mu} p_{\theta xi} + p_{\theta xj} }}, $$
$$ \begin{aligned} g_{115} {\mkern 1mu} {\mkern 1mu} & = - \frac{{2p_{\theta yj} }}{{\varDelta_{3} }}\left[ {3{\mkern 1mu} \tilde{e}_{1} + 6{\mkern 1mu} {\mkern 1mu} \tilde{e}_{1} {\mkern 1mu} p_{\theta yi} + 1 - 6p_{uzi} - {\mkern 1mu} 6{\mkern 1mu} p_{{uzj{\mkern 1mu} }} } \right],\\ g_{119} {\mkern 1mu} {\mkern 1mu} & = - \frac{{6{\mkern 1mu} }}{{\varDelta_{3} L_{m} }}(p_{\theta yj} + 2p_{\theta yi} p_{\theta yj} ),\end{aligned} $$
$$ g_{1111} {\mkern 1mu} {\mkern 1mu} = - \frac{{2p_{\theta yj} }}{{\varDelta_{3} }}\left[ {{\mkern 1mu} {\mkern 1mu} 3{\mkern 1mu} \tilde{e}_{2} ({\mkern 1mu} {\mkern 1mu} 1 + 2p_{\theta yi} ){\mkern 1mu} + {\mkern 1mu} 6({\mkern 1mu} p_{uzi} + p_{uzj} + {\mkern 1mu} {\mkern 1mu} p_{\theta yi} ){\mkern 1mu} + 2} \right], $$
$$ \begin{aligned} g_{126} {\mkern 1mu} {\mkern 1mu} & = - \frac{{2p_{\theta zj} }}{{\varDelta_{2} }}\left[ {3{\mkern 1mu} \tilde{e}_{1} ({\mkern 1mu} 1 + 2{\mkern 1mu} p_{\theta zi} ) - {\mkern 1mu} 6{\mkern 1mu} (p_{uyi} + p_{{uyj{\mkern 1mu} }} ) + 1} \right],\\ g_{128} {\mkern 1mu} {\mkern 1mu} &= \frac{{6{\mkern 1mu} }}{{\varDelta_{2} L_{m} }}(p_{\theta zj} + 2p_{\theta zi} p_{\theta zj} ),\end{aligned} $$
$$ g_{1212} {\mkern 1mu} {\mkern 1mu} = - \frac{{2p_{\theta zj} }}{{\varDelta_{2} }}\left[ {{\mkern 1mu} 3{\mkern 1mu} \tilde{e}_{2} ({\mkern 1mu} 1 + 2p_{\theta zi} ){\mkern 1mu} + {\mkern 1mu} {\mkern 1mu} 6({\mkern 1mu} {\mkern 1mu} {\mkern 1mu} p_{uyi} {\mkern 1mu} + {\mkern 1mu} {\mkern 1mu} p_{uyj} + {\mkern 1mu} {\mkern 1mu} p_{\theta zi} ) + 2} \right], $$

in which

$$ \begin{aligned} \tilde{e}_{1} = & \frac{{e_{1} }}{{L_{m} }},\,\tilde{e}_{2} = \frac{{e_{2} }}{{L_{m} }},\,p_{{uxi{\mkern 1mu} }} = \frac{EA}{{k_{{uxi{\mkern 1mu} }} L_{m} }},\\ p_{{uxj{\mkern 1mu} }} & = \frac{EA}{{k_{{uxj{\mkern 1mu} }} L_{m} }},\,p_{{\theta xi{\mkern 1mu} }} = \frac{GJ}{{k_{{\theta xi{\mkern 1mu} }} }},\,p_{{\theta xj{\mkern 1mu} }} = \frac{GJ}{{k_{{\theta xj{\mkern 1mu} }} }},\end{aligned} $$
$$ \begin{aligned} p_{{uyi{\mkern 1mu} }} & = \frac{{EI_{z} }}{{k_{{uyi{\mkern 1mu} }} L_{m}^{3} }},\,p_{{uyj{\mkern 1mu} }} = \frac{{EI_{z} }}{{k_{{uyj{\mkern 1mu} }} L_{m}^{3} }},\\ p_{{uzi{\mkern 1mu} }} & = \frac{{EI_{y} }}{{k_{{uzi{\mkern 1mu} }} L_{m}^{3} }},\,p_{{uzj{\mkern 1mu} }} = \frac{{EI_{y} }}{{k_{{uzj{\mkern 1mu} }} L_{m}^{3} }},\end{aligned} $$
$$ \begin{aligned} p_{\theta yi} & = \frac{{EI_{y} }}{{k_{\theta yi} L_{m} }},\,p_{\theta yj} {\mkern 1mu} = \frac{{EI_{y} }}{{k_{\theta yj} L_{m} }},\\ p_{\theta zi} & = \frac{{EI_{z} }}{{k_{\theta zi} L_{m} }},\,p_{\theta zj} {\mkern 1mu} = \frac{{EI_{z} }}{{k_{\theta zj} L_{m} }},\end{aligned} $$
$$\begin{aligned} \varDelta_{2} &= {\mkern 1mu} \left( {1 + 4{\mkern 1mu} p_{\theta zi} + 4p_{\theta zj} + 12p_{{\theta zi{\mkern 1mu} }} p_{\theta zj} {\mkern 1mu} } \right) \\ & \quad + 12\left( {p_{uyi} {\mkern 1mu} + p_{uyj} {\mkern 1mu} {\mkern 1mu} } \right)\left( {1 + {\mkern 1mu} {\mkern 1mu} p_{\theta zi} + p_{\theta zj} } \right), \end{aligned}$$
$$\begin{aligned} \varDelta_{3} &= {\mkern 1mu} \left( {{\mkern 1mu} 1 + {\mkern 1mu} 4p_{\theta yi} + {\mkern 1mu} 4p_{\theta yj} + 12p_{{\theta yi{\mkern 1mu} }} p_{\theta yj} {\mkern 1mu} } \right) \\ & \quad + 12\left( {p_{uzi} {\mkern 1mu} + p_{uzj} {\mkern 1mu} {\mkern 1mu} } \right)\left( {1 + {\mkern 1mu} {\mkern 1mu} p_{\theta yi} + {\mkern 1mu} p_{\theta yj} {\mkern 1mu} } \right). \end{aligned}$$

The stiffness matrix of the hybrid joint-beam element is

$$ \varvec{K}_{s} = \frac{E}{{L_{m} }}\left[ {\begin{array}{*{20}c} {A\phi_{1} } & 0 & 0 & 0 & 0 & 0 & { - A\phi_{1} } & 0 & 0 & 0 & 0 & 0 \\ 0 & {\frac{{12I_{z} \phi_{2} }}{{L_{m}^{2} }}} & 0 & 0 & 0 & {\frac{{6I_{z} \phi_{3} }}{{L_{m} }}} & 0 & { - \frac{{12I_{z} \phi_{2} }}{{L_{m}^{2} }}} & 0 & 0 & 0 & {\frac{{6I_{z} \phi_{4} }}{{L_{m} }}} \\ {} & {} & {\frac{{12I_{y} \phi_{5} }}{{L_{m}^{2} }}} & 0 & { - \frac{{6I_{y} \phi_{6} }}{{L_{m} }}} & 0 & 0 & 0 & { - \frac{{12I_{y} \phi_{5} }}{{L_{m}^{2} }}} & 0 & { - \frac{{6I_{y} \phi_{7} }}{{L_{m} }}} & 0 \\ {} & {} & {} & {\frac{{GJ\phi_{8} }}{E}} & 0 & 0 & 0 & 0 & 0 & { - \frac{{GJ\phi_{8} }}{E}} & 0 & 0 \\ {} & {} & {} & {} & {4I_{y} \phi_{9} } & 0 & 0 & 0 & {\frac{{6I_{y} \phi_{6} }}{{L_{m} }}} & 0 & {2I_{y} \phi_{10} } & 0 \\ {} & {} & {} & {} & {} & {4I_{z} \phi_{11} } & 0 & {\frac{{6I_{z} \phi_{3} }}{{L_{m} }}} & 0 & 0 & 0 & {2I_{z} \phi_{12} } \\ {} & {} & {} & {} & {} & {} & {A\phi_{1} } & 0 & 0 & 0 & 0 & 0 \\ {} & {} & {} & {} & {} & {} & {} & {\frac{{12I_{z} \phi_{2} }}{{L_{m}^{2} }}} & 0 & 0 & 0 & { - \frac{{6I_{z} \phi_{4} }}{{L_{m} }}} \\ {} & {} & {symm} & {} & {} & {} & {} & {} & {\frac{{12I_{y} \phi_{5} }}{{L_{m}^{2} }}} & 0 & {\frac{{6I_{y} \phi_{7} }}{{L_{m} }}} & 0 \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {\frac{{GJ\phi_{8} }}{E}} & 0 & 0 \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {4I_{y} \phi_{13} } & 0 \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {4I_{z} \phi_{14} } \\ \end{array} } \right] $$

where the coefficients \( \phi_{1} {\mkern 1mu} {\mkern 1mu} \) ~ \( \phi_{14} {\mkern 1mu} {\mkern 1mu} \) are given as

$$\begin{aligned} \phi_{1} {\mkern 1mu} {\mkern 1mu} & = \frac{1}{{(1 + {\mkern 1mu} p_{uxi} + p_{uxj} )}},\\ \phi_{2} {\mkern 1mu} & = \frac{1}{{\varDelta_{2} }}(1 + p_{\theta zi} + p_{\theta zj} ){\mkern 1mu},\end{aligned} $$
$$ \begin{aligned} \phi_{3} & = \frac{{{\mkern 1mu} 1}}{{\varDelta_{2} }}\left[ {1 + 2{\mkern 1mu} {\mkern 1mu} p_{\theta zj} {\mkern 1mu} + 2{\mkern 1mu} \tilde{e}_{1} (1 + p_{\theta zi} + {\mkern 1mu} p_{\theta zj} {\mkern 1mu} )} \right],\\ \phi_{4} {\mkern 1mu} {\mkern 1mu} & = \frac{{{\mkern 1mu} 1}}{{\varDelta_{2} }}\left[ {1 + 2{\mkern 1mu} {\mkern 1mu} p_{\theta zi} + 2{\mkern 1mu} \tilde{e}_{2} ({\mkern 1mu} 1 + p_{\theta zi} + {\mkern 1mu} p_{\theta zj} )} \right],\end{aligned} $$
$$ \begin{aligned} \phi_{5} & = \frac{{{\mkern 1mu} 1}}{{\varDelta_{3} }}(1 + p_{\theta yi} + p_{\theta yj} ),\\ \phi_{6} & = \frac{1}{{\varDelta_{3} }}\left[ {1 + 2{\mkern 1mu} {\mkern 1mu} p_{\theta yj} + 2{\mkern 1mu} \tilde{e}_{1} ({\mkern 1mu} 1 + p_{\theta yi} + {\mkern 1mu} p_{\theta yj} )} \right],\end{aligned} $$
$$ \begin{aligned} \phi_{7} & = \frac{1}{{\varDelta_{3} }}\left[ {1 + 2{\mkern 1mu} {\mkern 1mu} p_{\theta yi} + 2{\mkern 1mu} \tilde{e}_{2} ({\mkern 1mu} 1 + p_{\theta yi} + {\mkern 1mu} p_{\theta yj} {\mkern 1mu} )} \right],\\ \phi_{8} {\mkern 1mu} {\mkern 1mu} & = \frac{1}{{(1 + {\mkern 1mu} p_{\theta xi} + p_{\theta xj} )}},\end{aligned} $$
$$\begin{aligned} \phi_{9} {\mkern 1mu} {\mkern 1mu} &= \frac{1}{{\varDelta_{3} }}\left[\vphantom{\tilde{e}_{1}^{2}\!}{1 + 3{\mkern 1mu} {\mkern 1mu} (\tilde{e}_{{1{\mkern 1mu} }} + 2p_{\theta yj} \tilde{e}_{{1{\mkern 1mu} }} + {\mkern 1mu} p_{\theta yj} {\mkern 1mu} ){\mkern 1mu} }\right. \\ & \quad \left.{+ 3{\mkern 1mu} {\mkern 1mu} \tilde{e}_{1}^{2} (1 + {\mkern 1mu} p_{\theta yi} + p_{\theta yj} ) + 3(p_{uzi} + p_{uzj} )} \right], \end{aligned}$$
$$\begin{aligned} \phi_{10} {\mkern 1mu} &= \frac{1}{{\varDelta_{3} }}\left[ {1 + {\mkern 1mu} {\mkern 1mu} 3(\tilde{e}_{{1{\mkern 1mu} }} + \tilde{e}_{2} {\mkern 1mu} {\mkern 1mu} + 2p_{\theta yi} \tilde{e}_{1} {\mkern 1mu} {\mkern 1mu} + 2{\mkern 1mu} p_{\theta yj} \tilde{e}_{2} ) }\right. \\ & \quad \left.{+ 6{\mkern 1mu} \tilde{e}_{1} {\mkern 1mu} \tilde{e}_{2} (1{\mkern 1mu} + p_{\theta yi} + {\mkern 1mu} p_{\theta yj} ) - 6(p_{uzi} + p_{uzj} )} \right], \end{aligned}$$
$$ \begin{aligned} \phi_{11} {\mkern 1mu} {\mkern 1mu} &= \frac{1}{{\varDelta_{2} }}\left[\vphantom{\tilde{e}_{1}^{2}\!}{1 + 3(\tilde{e}_{{1{\mkern 1mu} }} + 2p_{\theta zj} \tilde{e}_{1} {\mkern 1mu} + p_{\theta zj} ) }\right. \\ & \quad \left.{+ 3{\mkern 1mu} {\mkern 1mu} \tilde{e}_{1}^{2} (1{\mkern 1mu} + {\mkern 1mu} p_{\theta zi} + p_{\theta zj} ){\mkern 1mu} {\mkern 1mu} + 3(p_{uyi} + p_{uyj} )} \right], \end{aligned} $$
$$\begin{aligned} \phi_{12} {\mkern 1mu} {\mkern 1mu} &= \frac{1}{{\varDelta_{2} }}\left[ {1 + 3(\tilde{e}_{{1{\mkern 1mu} }} + \tilde{e}_{2} {\mkern 1mu} {\mkern 1mu} + 2p_{\theta zi} \tilde{e}_{1} {\mkern 1mu} + 2p_{\theta zj} \tilde{e}_{2} ) }\right. \\ & \quad \left.{+ 6{\mkern 1mu} \tilde{e}_{1} {\mkern 1mu} \tilde{e}_{2} (1{\mkern 1mu} {\mkern 1mu} + p_{\theta zi} {\mkern 1mu} + {\mkern 1mu} p_{\theta zj} ) - 6(p_{uyi} {\mkern 1mu} + p_{uyj} )} \right], \end{aligned} $$
$$\begin{aligned} \phi_{13} {\mkern 1mu} {\mkern 1mu} &= \frac{1}{{\varDelta_{3} }}\left[\vphantom{\tilde{e}_{1}^{2}\!}{1 + 3(\tilde{e}_{{2{\mkern 1mu} }} + 2p_{\theta yi} \tilde{e}_{2} {\mkern 1mu} + {\mkern 1mu} p_{\theta yi} ){\mkern 1mu} {\mkern 1mu} }\right. \\ & \quad \left.{ + 3{\mkern 1mu} {\mkern 1mu} \tilde{e}_{2}^{2} (1 + {\mkern 1mu} p_{\theta yi} + p_{\theta yj} ) + 3(p_{uzi} + p_{uzj} )} \right], \end{aligned} $$
$$ \begin{aligned} \phi_{14}& = \frac{1}{{\varDelta_{2} }}\left[ {1 + 3(\tilde{e}_{2} + 2p_{\theta zi} \tilde{e}_{2} + {\mkern 1mu} p_{\theta zi} ) }\right. \\ & \quad \left.{ + 3{\mkern 1mu} {\mkern 1mu} \tilde{e}_{2}^{2} (1{\mkern 1mu} {\mkern 1mu} + {\mkern 1mu} p_{\theta zi} {\mkern 1mu} {\mkern 1mu} + p_{\theta zj} ) + 3(p_{uyi} + p_{uyj} )} \right]. \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wang, L., Jin, D. et al. Equivalent continuum modeling of beam-like truss structures with flexible joints. Acta Mech. Sin. 35, 1067–1078 (2019). https://doi.org/10.1007/s10409-019-00872-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00872-z

Keywords

Navigation