Skip to main content
Log in

Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Dynamic wetting plays an important role in the physics of multiphase flow, and has a significant influence on many industrial and geotechnical applications. In this work, a modified smoothed particle hydrodynamics (SPH) model is employed to simulate surface tension, contact angle and dynamic wetting effects at meso-scale. The wetting and dewetting phenomena are simulated in a capillary tube, where the liquid particles are raised or withdrawn by a shifting substrate. The SPH model is modified by introducing a newly developed viscous force formulation at the liquid–solid interface to reproduce the rate-dependent behaviour of the moving contact line. Dynamic contact angle simulations with the interfacial viscous force are conducted to verify the effectiveness and accuracy of this new formulation. In addition, the influence of interfacial viscous forces with different magnitude on the contact angle dynamics is examined by empirical power-law correlations; the derived constants suggest that the dynamic contact angle changes monotonically with the interfacial viscous force. The simulation results are consistent with experimental observations and theoretical predictions, implying that the interfacial viscous force can be associated with the slip length of flow and the microscopic surface roughness. This work demonstrates that the modified SPH model can successfully account for the rate-dependent effects of a moving contact line, and can be used for realistic multiphase flow simulations under dynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abriola, L.M., Pinder, G.F.: A multiphase approach to the modeling of porous media contamination by organic compounds: 1. Equation development. Water Resour. Res. 21, 11–18 (1985)

    Article  Google Scholar 

  2. Ran, Q.Q., Gu, X.Y., Li, S.L.: A coupled model for multiphase fluid flow and sedimentation deformation in oil reservoir and its numerical simulation. Acta Mech. Sin. 13, 264–272 (1997)

    Article  Google Scholar 

  3. Bandara, U.C., Palmer, B.J., Tartakovsky, A.M.: Effect of wettability alteration on long-term behavior of fluids in subsurface. Comput. Part. Mech. 3, 277–289 (2016)

    Article  Google Scholar 

  4. Gan, Y., Maggi, F., Buscarnera, G., et al.: A particle-water based model for water retention hysteresis. Geotech. Lett. 3, 152–161 (2013)

    Article  Google Scholar 

  5. Flores-Johnson, E.A., Wang, S., Maggi, F., et al.: Discrete element simulation of dynamic behaviour of partially saturated sand. Int. J. Mech. Mater. Des. 12, 495–507 (2016)

    Article  Google Scholar 

  6. Li, S., Liu, M., Hanaor, D., et al.: Dynamics of viscous entrapped saturated zones in partially wetted porous media. Transp. Porous Media 125, 193–210 (2018)

    Article  Google Scholar 

  7. Kiwi-Minsker, L., Renken, A.: Microstructured reactors for catalytic reactions. Catal. Today 110, 2–14 (2005)

    Article  Google Scholar 

  8. Schwartz, A.M., Tejada, S.B.: Studies of dynamic contact angles on solids. J. Colloid Interface Sci. 38, 359–375 (1972)

    Article  Google Scholar 

  9. Jiang, T.S., Soo-Gun, O.H., Slattery, J.C.: Correlation for dynamic contact angle. J. Colloid Interface Sci. 69, 74–77 (1979)

    Article  Google Scholar 

  10. Bracke, M., De Voeght, F., Joos, P.: The kinetics of wetting: the dynamic contact angle. Prog. Colloid Pol. Sci. 79, 142–149 (1989)

    Article  Google Scholar 

  11. Cox, R.G.: The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169–194 (1986)

    Article  MATH  Google Scholar 

  12. Hoffman, R.L.: A study of the advancing interface: II. Theoretical prediction of the dynamic contact angle in liquid–gas systems. J. Colloid Interface Sci. 94, 470–486 (1983)

    Article  Google Scholar 

  13. Raiskinmäki, P., Shakib-Manesh, A., Jäsberg, A., et al.: Lattice-Boltzmann simulation of capillary rise dynamics. J. Stat. Phys. 107, 143–158 (2002)

    Article  MATH  Google Scholar 

  14. Koplik, J., Banavar, J.R., Willemsen, J.F.: Molecular dynamics of Poiseuille flow and moving contact lines. Phys. Rev. Lett. 60, 1282–1285 (1988)

    Article  Google Scholar 

  15. Huber, M., Keller, F., Säckel, W., et al.: On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale. J. Comput. Phys. 310, 459–477 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lukyanov, A.V., Likhtman, A.E.: Dynamic contact angle at the nanoscale: a unified view. ACS Nano 10, 6045–6053 (2016)

    Article  Google Scholar 

  17. Tartakovsky, A.M., Panchenko, A.: Pairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamics. J. Comput. Phys. 305, 1119–1146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eral, H.B., Oh, J.M.: Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym. Sci. 291, 247–260 (2013)

    Article  Google Scholar 

  19. Rame, E.: The interpretation of dynamic contact angles measured by the Wilhelmy plate method. J. Colloid Interface Sci. 185, 245–251 (1997)

    Article  Google Scholar 

  20. Blake, T.D., Haynes, J.M.: Kinetics of liquid–liquid displacement. J. Colloid Interface Sci. 30, 421–423 (1969)

    Article  Google Scholar 

  21. Petrov, P., Petrov, I.: A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8, 1762–1767 (1992)

    Article  Google Scholar 

  22. Elliott, G.E.P., Riddiford, A.C.: Dynamic contact angles: I. The effect of impressed motion. J. Colloid Interface Sci. 23, 389–398 (1967)

    Article  Google Scholar 

  23. Schäffer, E., Wong, P.Z.: Contact line dynamics near the pinning threshold: a capillary rise and fall experiment. Phys. Rev. E 61, 5257–5277 (2000)

    Article  Google Scholar 

  24. Shi, Z., Zhang, Y., Liu, M., et al.: Dynamic contact angle hysteresis in liquid bridges. Colloids Surf. A Physicochem. Eng. Asp. 555, 365–371 (2018)

    Article  Google Scholar 

  25. Kim, J.H., Rothstein, J.P.: Dynamic contact angle measurements of viscoelastic fluids. J. Nonnewton Fluid Mech. 225, 54–61 (2015)

    Article  Google Scholar 

  26. Seebergh, J.E., Berg, J.C.: Dynamic wetting in the low capillary number regime. Chem. Eng. Sci. 47, 4455–4464 (1992)

    Article  Google Scholar 

  27. Kordilla, J., Tartakovsky, A.M., Geyer, T.: A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces. Adv. Water Resour. 59, 1–14 (2013)

    Article  Google Scholar 

  28. Shigorina, E., Kordilla, J., Tartakovsky, A.M.: Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow. Phys. Rev. E 96, 033115 (2017)

    Article  Google Scholar 

  29. Meakin, P., Tartakovsky, A.M.: Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47, RG3002 (2009)

    Article  Google Scholar 

  30. Thompson, P.A., Robbins, M.O.: Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766–769 (1989)

    Article  Google Scholar 

  31. Huang, P., Shen, L., Gan, Y., et al.: Coarse-grained modeling of multiphase interactions at microscale. J. Chem. Phys. 149, 124505 (2018)

    Article  Google Scholar 

  32. Dos Santos, L.O., Wolf, F.G., Philippi, P.C.: Dynamics of interface displacement in capillary flow. J. Stat. Phys. 121, 197–207 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chibbaro, S., Biferale, L., Diotallevi, F., et al.: Capillary filling for multicomponent fluid using the pseudo-potential lattice Boltzmann method. Eur. Phys. J. Spec. Top. 171, 223–228 (2009)

    Article  Google Scholar 

  34. Xu, A., Shyy, W., Zhao, T.: Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries. Acta Mech. Sin. 33, 555–574 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bertrand, E., Blake, T.D., De Coninck, J.: Influence of solid–liquid interactions on dynamic wetting: a molecular dynamics study. J. Phys. Condens. Matter 21, 464124 (2009)

    Article  Google Scholar 

  37. Benzi, R., Biferale, L., Sbragaglia, M., et al.: Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys. Rev. E 74, 021509 (2006)

    Article  MathSciNet  Google Scholar 

  38. Caiazzo, A.: Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Prog. Comput. Fluid Dyn. 8, 3–10 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tartakovsky, A., Meakin, P.: Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys. Rev. E 72, 026301 (2005)

    Article  Google Scholar 

  40. Liu, M., Meakin, P., Huang, H.: Dissipative particle dynamics simulation of pore-scale multiphase fluid flow. Water. Resour. Res. 43, W04411 (2007)

    Google Scholar 

  41. Li, L., Shen, L., Nguyen, G.D., et al.: A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. Comput. Mech. 62, 1071–1085 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)

    Article  MATH  Google Scholar 

  43. Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation San Diego, California, 209–217 (2007)

  44. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)

    Article  MATH  Google Scholar 

  45. Breinlinger, T., Polfer, P., Hashibon, A., et al.: Surface tension and wetting effects with smoothed particle hydrodynamics. J. Comput. Phys. 243, 14–27 (2013)

    Article  MATH  Google Scholar 

  46. Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  47. Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Meister, M., Burger, G., Rauch, W.: On the Reynolds number sensitivity of smoothed particle hydrodynamics. J. Hydraul. Res. 52, 824–835 (2014)

    Article  Google Scholar 

  49. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Monaghan, J.J., Kajtar, J.B.: SPH particle boundary forces for arbitrary boundaries. Comput. Phys. Commun. 180, 1811–1820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)

    Article  MATH  Google Scholar 

  52. Feldman, J., Bonet, J.: Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int. J. Numer. Methods Eng. 72, 295–324 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang, J., Chan, D.: Frictional contact algorithms in SPH for the simulation of soil–structure interaction. Int. J. Numer. Anal. Methods Geomech. 38, 747–770 (2014)

    Article  Google Scholar 

  54. Schnell, E.: Slippage of water over nonwettable surfaces. J. Appl. Phys. 27, 1149–1152 (1956)

    Article  Google Scholar 

  55. Churaev, N.V., Sobolev, V.D., Somov, A.N.: Slippage of liquids over lyophobic solid surfaces. J. Colloid Interface Sci. 97, 574–581 (1984)

    Article  Google Scholar 

  56. Cheng, J.T., Giordano, N.: Fluid flow through nanometer-scale channels. Phys. Rev. E 65, 031206 (2002)

    Article  Google Scholar 

  57. Choi, C.H., Westin, K.J.A., Breuer, K.S.: Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15, 2897–2902 (2003)

    Article  MATH  Google Scholar 

  58. Pit, R., Hervet, H., Leger, L.: Direct experimental evidence of slip in hexadecane: solid interfaces. Phys. Rev. Lett. 85, 980–983 (2000)

    Article  Google Scholar 

  59. Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010)

    Article  Google Scholar 

  60. Majumder, M., Chopra, N., Andrews, R., et al.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44–44 (2005)

    Article  Google Scholar 

  61. Lee, C., Kim, C.J.C.: Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25, 12812–12818 (2009)

    Article  Google Scholar 

  62. Ramachandran, P.: A reproducible and high-performance framework for smoothed particle hydrodynamics. In: Proceedings of the 15th Python in Science Conference, pp. 127–135 (2016)

  63. Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  64. Hocking, L.M.: A moving fluid interface on a rough surface. J. Fluid Mech. 76, 801–817 (1976)

    Article  MATH  Google Scholar 

  65. Niavarani, A., Priezjev, N.V.: Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids. Phys. Rev. E 81, 011606 (2010)

    Article  Google Scholar 

  66. Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)

    Article  Google Scholar 

  67. Karim, A.M., Rothstein, J.P., Kavehpour, H.P.: Experimental study of dynamic contact angles on rough hydrophobic surfaces. J. Colloid Interface Sci. 513, 658–665 (2018)

    Article  Google Scholar 

  68. Landau, L.D., Levich, B.: Dynamics of Curved Fronts. Academic, San Diego (1988)

    Google Scholar 

  69. Li, X., Fan, X., Askounis, A., et al.: An experimental study on dynamic pore wettability. Chem. Eng. Sci. 104, 988–997 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (Grant DP170102886) and the University of Sydney SOAR Fellowship. This research was undertaken with the assistance of the HPC service at University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiang Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Li, L., Shen, L. et al. Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis. Acta Mech. Sin. 35, 472–485 (2019). https://doi.org/10.1007/s10409-018-00837-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-00837-8

Keywords

Navigation