Skip to main content
Log in

Closed form solutions for free vibrations of rectangular Mindlin plates

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A new two-eigenfunctions theory, using the amplitude deflection and the generalized curvature as two fundamental eigenfunctions, is proposed for the free vibration solutions of a rectangular Mindlin plate. The three classical eigenvalue differential equations of a Mindlin plate are reformulated to arrive at two new eigenvalue differential equations for the proposed theory. The closed form eigensolutions, which are solved from the two differential equations by means of the method of separation of variables are identical with those via Kirchhoff plate theory for thin plate, and can be employed to predict frequencies for any combinations of simply supported and clamped edge conditions. The free edges can also be dealt with if the other pair of opposite edges are simply supported. Some of the solutions were not available before. The frequency parameters agree closely with the available ones through pb-2 Rayleigh–Ritz method for different aspect ratios and relative thickness of plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chladni, E.F.F.: Entdeckungen uber die Theorie des Klanges. Weidmanns Erben & Reich, Leipzig (1787)

  2. Kirchhoff G.: Uber das gleichgwich und die bewegung einer elastischen scheibe. J. Angew Math. 40, 51–88 (1850)

    MATH  Google Scholar 

  3. Leissa, A.W.: Vibration of Plates. NASA SP-160 (1969)

  4. Leissa A.W.: The free vibration of rectangular plates. J. Sound Vib. 31, 257–293 (1973)

    Article  MATH  Google Scholar 

  5. Leissa A.W.: Recent research in plate vibrations: classical theory. Shock Vib. Dig. 9(10), 13–24 (1977)

    Article  Google Scholar 

  6. Leissa A.W.: Recent research in plate vibrations, 1973–1976: complicating effects. Shock Vib. Dig. 10(12), 21–35 (1978)

    Article  Google Scholar 

  7. Leissa A.W.: Plate vibration research, 1976–1980: classical theory. Shock Vib. Dig. 13(9), 11–22 (1981)

    Article  Google Scholar 

  8. Leissa A.W.: Plate vibration research, 1976–1980: complicating effects. Shock Vib. Dig. 13(10), 19–36 (1981)

    Article  Google Scholar 

  9. Leissa A.W.: Recent studies in plate vibrations, 1981–1985. Part I: classical theory. Shock Vib. Dig. 19(2), 11–18 (1987)

    Article  Google Scholar 

  10. Leissa A.W.: Recent studies in plate vibrations, 1981–1985. Part II: complicating effects. Shock Vib. Dig. 19(3), 10–24 (1987)

    Article  Google Scholar 

  11. Hedrih (Stevanović) K.: Energy transfer in double plate system dynamics. Acta Mech. Sin. 24, 331–344 (2008)

    Article  MathSciNet  Google Scholar 

  12. Hedrih (Stevanović) K.: Transversal vibrations of double-plate systems. Acta Mech. Sin. 22, 487–501 (2006)

    Article  Google Scholar 

  13. Liew K.M., Xiang Y., Kitipornchai S.: Research on thick plate vibration: a literature survey. J. Sound Vib. 180, 163–176 (1995)

    Article  Google Scholar 

  14. Reissner E.: The effect of transverse shear deformation on the bending of elastic plates. Trans. ASME J. Appl. Mech. 12, A69–A77 (1945)

    MathSciNet  Google Scholar 

  15. Mindlin R.D.: Influence of rotatory inertia and shear on flexural motion of isotropic, elastic plates. Trans. ASME J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  16. Endo M., Kimura N.: An alternative formulation of the boundary value problem for the Timoshenko beam and Mindlin plate. J. Sound Vib. 301, 355–373 (2007)

    Article  Google Scholar 

  17. Shimpi R.P., Patel H.G.: Free vibrations of plate using two variable refined plate theory. J. Sound Vib. 296, 979–999 (2006)

    Article  Google Scholar 

  18. Hashemi S.H., Arsanjani M.: Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. Int. J. Solids Struct. 42, 819–853 (2005)

    Article  MATH  Google Scholar 

  19. Brunelle E.J.: Buckling of transversely isotropic Mindlin plates. AIAA J. 9(6), 1018–1022 (1971)

    Article  MATH  Google Scholar 

  20. Gorman D.J., Ding W.: Accurate free vibration analysis of point supported Mindlin plates by the superposition method. J. Sound Vib. 219, 265–277 (1999)

    Article  Google Scholar 

  21. Wang C.M.: Natural frequencies formula for simply supported Mindlin plates. ASME J. Vib. Acoust. 116, 536–540 (1994)

    Article  Google Scholar 

  22. Xiang Y., Wei G.W.: Exact solutions for buckling and vibration of stepped rectangular Mindlin plates. Int. J. Solids Struct. 41, 279–294 (2004)

    Article  MATH  Google Scholar 

  23. Xiang Y.: Vibration of rectangular Mindlin plates resting on non-homogenous elastic foundations. Int. J. Mech. Sci. 45, 1229–1244 (2003)

    Article  MATH  Google Scholar 

  24. Liew K.M., Xiang Y., Kitipornchai S.: Transverse vibration of thick rectangular plates—I. Comprehensive sets of boundary conditions. Comput. Struct. 49, 1–29 (1993)

    Article  Google Scholar 

  25. Cheung Y.K., Zhou D.: Vibrations of moderately thick rectangular plates in terms of a set of static Timoshenko beam functions. Comput. Struct. 78, 757–768 (2000)

    Article  Google Scholar 

  26. Shen H.S., Yang J., Zhang L.: Free and forced vibration of Reissner–Mindlin plates with free edges resting on elastic foundations. J. Sound Vib. 244(2), 299–320 (2001)

    Article  Google Scholar 

  27. Liu F.L., Liew K.M.: Vibration analysis of discontinuous Mindlin plates by differential quadrature element method. Trans. ASME 121, 204–208 (1999)

    Google Scholar 

  28. Malekzadeh P., Karami G., Farid M.: A semi-analytical DQEM for free vibration analysis of thick plates with two opposite edges simply supported. Comput. Methods Appl. Mech. Eng. 193, 4781–4796 (2004)

    Article  MATH  Google Scholar 

  29. Hou Y.S., Wei G.W., Xiang Y.: DSC-Ritz method for the free vibration analysis of Mindlin plates. Int. J. Numer. Methods Eng. 62, 262–288 (2005)

    Article  MATH  Google Scholar 

  30. Diaz-Contreras R.E., Nomura S.: Green’s function applied to solution of Mindlin plates. Comput. Struct. 60(1), 41–48 (1996)

    Article  MATH  Google Scholar 

  31. Sakiyama T., Huang M.: Free vibration analysis of rectangular plates with variable thickness. J. Sound Vib. 216, 379–397 (1998)

    Article  Google Scholar 

  32. Srinivas S., Rao C.V., Rao A.K.: An exact analysis for vibration of simple-supported homogeneous and laminated thick rectangular plates. J. Sound Vib. 12, 187–199 (1970)

    Article  MATH  Google Scholar 

  33. Wittrick W.H.: Analytical three-dimensional elasticity solutions to some plate problems and some observations on Mindlin’s plate theory. Int. J. Solids Struct. 23, 441–464 (1987)

    Article  MATH  Google Scholar 

  34. Xing, Y.F., Liu, B.: New exact solutions for free vibrations of thin orthotropic rectangular plates. Compos. Struct. (2008). doi:10.1016/j.compstruct.2008.11.010

  35. Xing, Y.F., Liu, B.: New exact solutions for free vibrations of rectangular thin plate by symplectic dual method. Acta Mech. Sin. 25(2) (2009)

  36. Xing, Y.F., Liu, B.: Characteristic equations and closed-form solutions for free vibrations of rectangular Mindlin plates. Acta Mech. Solida Sin. (2008). doi:10.1007/s10338-008-0830-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Xing.

Additional information

This project was supported by the National Natural Science Foundation of China (10772014).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, Y., Liu, B. Closed form solutions for free vibrations of rectangular Mindlin plates. Acta Mech Sin 25, 689–698 (2009). https://doi.org/10.1007/s10409-009-0253-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0253-7

Keywords

Navigation