Skip to main content
Log in

Fortschritte in der molekularen Epidemiologie der Tuberkulose

Advances in the molecular epidemiology of tuberculosis

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Die Genotypisierung von Erregern des Mycobacterium-tuberculosis-Komplexes (MTBK) hat sich als Standardmethode für epidemiologische Studien und für Untersuchungen der Populationsstruktur etabliert. Klassische Anwendungen umfassen die Untersuchung von Laborkontaminationen sowie die Ermittlung von frischen Übertragungen und Ausbrüchen in einer Population. Von besonderer Bedeutung ist die Analyse der Übertragbarkeit und Ausbreitung multiresistenter MTBK-Stämme. Klassische Typisierungsmethoden sind das IS6110-DNA-Fingerprinting, die Spoligotyping- und die 24-Loci-MIRU-VNTR-Analyse. Diese Methoden basieren auf der Variabilität bestimmter repetitiver Sequenzen in den Genomen von MTBK-Isolaten und sind für verschiedenste Fragestellungen in molekularepidemiologischen Studien erfolgreich eingesetzt worden. Für die Spoligotyping- und die 24-Loci-MIRU-VNTR-Typisierung stehen webbasierte Analyseverfahren zur Verfügung (MIRU-VNTRplus-Datenbank). Neuere Ansätze basieren auf einer Genomanalyse mittels „Next Generation Sequencing“ (NGS). Die genombasierte Typisierung erlaubt eine deutlich bessere Unterscheidung klinischer Isolate und könnte in Zukunft die bisherigen „klassischen“ diagnostischen und Genotypisierungsverfahren ersetzen.

Abstract

Genotyping of clinical Mycobacterium tuberculosis complex (MTBC) strains has become a standard tool for epidemiological studies and for the investigation of the local and global population structure. Classical applications comprise the analysis of laboratory cross contaminations and the determination of recent transmission chains and outbreak. Of special importance is the analysis of the transmissibility and expansion of multidrug drug resistant strains. Classical genotyping tools are the IS6110-DNA-fingerprint, spoligotyping and the 24-Loci MIRU-VNTR techniques. They target repetitive sequences in the genome of MTBC strains and have been applied successfully to a number of molecular epidemiological questions. For spoligotyping and MIRU-VNTR-typing online analysis tools are available (MIRU-VNTRplus). Newer approaches are based on Next Generation Sequencing (NGS) based genome analyses. Genome based typing offers a higher discrimination of clinical isolates and has the potential to replace classical diagnostic and genotyping techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Diel R, Bauer T, Schaberg T (2013) Tuberkulose: Fortschritte in den letzten 10 Jahren und Perspektiven für die weitere Entwicklung. Pneumol 10:39–46

    Article  Google Scholar 

  2. Dye C, Williams BG (2010) The population dynamics and control of tuberculosis. Science 328:856–861

    Article  CAS  PubMed  Google Scholar 

  3. Corbett EL, Watt CJ, Walker N et al (2003) The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163:1009–1021

    Article  PubMed  Google Scholar 

  4. Gandhi NR, Nunn P, Dheda K et al (2010) Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375:1830–1843

    Article  PubMed  Google Scholar 

  5. Niemann S, Diel R (2011) Neue Entwicklungen in der molekularen Epidemiologie der Tuberkulose. Pneumol 8:17–24

    Article  Google Scholar 

  6. Niemann S, Diel R, Khechinashvili G et al (2010) Mycobacterium tuberculosis Beijing lineage favors the spread of multidrug-resistant tuberculosis in the Republic of Georgia. J Clin Microbiol 48:3544–3550

    Article  PubMed Central  PubMed  Google Scholar 

  7. Pardini M, Niemann S, Varaine F et al (2009) Characteristics of drug-resistant tuberculosis in Abkhazia (Georgia), a high-prevalence area in Eastern Europe. Tuberculosis (Edinb) 89:317–324

    Google Scholar 

  8. Schürch AC, Soolingen D van (2012) DNA fingerprinting of Mycobacterium tuberculosis: from phage typing to whole-genome sequencing. Infect Genet Evol 12:602–609

    Article  PubMed  Google Scholar 

  9. Diel R, Meywald-Walter K, Gottschalk R et al (2004) Ongoing outbreak of tuberculosis in a low-incidence community: a molecular-epidemiological evaluation. Int J Tuberc Lung Dis 8:855–861

    CAS  PubMed  Google Scholar 

  10. Roetzer A, Diel R, Kohl TA et al (2013) Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 10:e1001387

    Article  PubMed Central  PubMed  Google Scholar 

  11. Roetzer A, Schuback S, Diel R et al (2011) Evaluation of Mycobacterium tuberculosis typing methods in a 4-year study in Schleswig-Holstein, Northern Germany. J Clin Microbiol 49:4173–4178

    Article  PubMed Central  PubMed  Google Scholar 

  12. Barnes PF, Cave MD (2003) Molecular epidemiology of tuberculosis. N Engl J Med 349:1149–1156

    Article  CAS  PubMed  Google Scholar 

  13. Golub JE, Cronin WA, Obasanjo OO et al (2001) Transmission of Mycobacterium tuberculosis through casual contact with an infectious case. Arch Intern Med 161:2254–2258

    Article  CAS  PubMed  Google Scholar 

  14. Small PM, Hopewell PC, Singh SP et al (1994) The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N Engl J Med 330:1703–1709

    Article  CAS  PubMed  Google Scholar 

  15. Small PM, Shafer RW, Hopewell PC et al (1993) Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection. N Engl J Med 328:1137–1144

    Article  CAS  PubMed  Google Scholar 

  16. Diel R, Schneider S, Meywald-Walter K et al (2002) Epidemiology of tuberculosis in Hamburg, Germany: long-term population-based analysis applying classical and molecular epidemiological techniques. J Clin Microbiol 40:532–539

    Article  PubMed Central  PubMed  Google Scholar 

  17. Heersma HF, Kremer K, Embden JD van (1998) Computer analysis of IS6110 RFLP patterns of Mycobacterium tuberculosis. Methods Mol Biol 101:395–422

    CAS  PubMed  Google Scholar 

  18. Mazurek GH, Cave MD, Eisenach KD et al (1991) Chromosomal DNA fingerprint patterns produced with IS6110 as strain-specific markers for epidemiologic study of tuberculosis. J Clin Microbiol 29:2030–2033

    CAS  PubMed Central  PubMed  Google Scholar 

  19. McAdam RA, Hermans PW, Soolingen D van et al (1990) Characterization of a Mycobacterium tuberculosis insertion sequence belonging to the IS3 family. Mol Microbiol 4:1607–1613

    Article  CAS  PubMed  Google Scholar 

  20. Kamerbeek J, Schouls L, Kolk A et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Prodinger WM (2007) Molecular epidemiology of tuberculosis: toy or tool? A review of the literature and examples from Central Europe. Wien Klin Wochenschr 119:80–89

    Article  CAS  PubMed  Google Scholar 

  22. Supply P, Allix C, Lesjean S et al (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44:4498–4510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Oelemann MC, Diel R, Vatin V et al (2007) Assessment of an optimized mycobacterial interspersed repetitive- unit-variable-number tandem-repeat typing system combined with spoligotyping for population-based molecular epidemiology studies of tuberculosis. J Clin Microbiol 45:691–697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hershberg R, Lipatov M, Small PM et al (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6:e311

    Article  PubMed Central  PubMed  Google Scholar 

  25. Sreevatsan S, Pan X, Stockbauer KE et al (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A 94:9869–9874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Weniger T, Krawczyk J, Supply P et al (2010) MIRU-VNTRplus: a web tool for polyphasic genotyping of Mycobacterium tuberculosis complex bacteria. Nucleic Acids Res 38:W326–W331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Weniger T, Krawczyk J, Supply P et al (2012) Online tools for polyphasic analysis of Mycobacterium tuberculosis complex genotyping data: now and next. Infect Genet Evol 12:748–754

    Article  PubMed  Google Scholar 

  28. Allix-Béguec C, Fauville-Dufaux M, Supply P (2008) Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 46:1398–1406

    Article  PubMed Central  PubMed  Google Scholar 

  29. Allix-Béguec C, Harmsen D, Weniger T et al (2008) Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol 46:2692–2699

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wirth T, Hildebrand F, Allix-Béguec C et al (2008) Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4:e1000160

    Article  PubMed Central  PubMed  Google Scholar 

  31. Walker TM, Ip CL, Harrell RH et al (2013) Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13:137–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Köser CU, Bryant JM, Becq J et al (2013) Whole-genome sequencing for rapid susceptibility testing of M. tuberculosis. N Engl J Med 369:290–292

    Article  PubMed  Google Scholar 

  33. Köser CU, Ellington MJ, Cartwright EJP et al (2012) Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 8:e1002824

    Article  PubMed Central  PubMed  Google Scholar 

  34. Walker TM, Monk P, Smith EG, Peto TEA (2013) Contact investigations for outbreaks of Mycobacterium tuberculosis: advances through whole genome sequencing. Clin Microbiol Infect 19:796–802

    Article  CAS  PubMed  Google Scholar 

  35. Niemann S, Köser CU, Gagneux S et al (2009) Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS One 4:e7407

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. S. Niemann und xxx geben an, dass kein Interessenkonflikt besteht. XXX§§§Bitte Verweise auf die Ref. 13 und 14 im Text ergänzen!§§§

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Niemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemann, S., Diel, R. Fortschritte in der molekularen Epidemiologie der Tuberkulose. Pneumologe 11, 21–27 (2014). https://doi.org/10.1007/s10405-013-0694-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-013-0694-3

Schlüsselwörter

Keywords

Navigation