Skip to main content
Log in

Extrakorporale Lungenunterstützungssysteme

Extracorporeal lung support systems

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Bei schwerem akutem Lungenversagen (ARDS), das durch konventionelle Therapie nicht ausreichend beherrscht werden kann, können zur Unterstützung des Gasaustauschs extrakorporale Systeme eingesetzt werden.

Pumpengetriebene Systeme (venovenöse extrakorporale Membranoxygenierung; vv-ECMO) sind indiziert, wenn eine therapierefraktäre Hypoxämie oder eine respiratorische Azidose (pH <7,2) vorliegen. Überlebensraten >50% werden bei schwerem ARDS unter vv-ECMO berichtet. Diese Systeme können etwa 50–80% des benötigten Gastransfers leisten und ermöglichen dadurch eine protektivere Beatmung, was das Ausmaß eines ventilatorinduzierten Lungenschadens begrenzt.

Pumpenlose Systeme („interventional lung assist“; iLA) mit arteriovenöser Kanülierung eignen sich zur Kohlendioxidelimination; primäre Indikation ist eine therapierefraktäre Hyperkapnie mit respiratorischer Azidose. Der Blutfluss wird hier durch die arteriovenöse Druckdifferenz generiert; eine eingeschränkte Pumpfunktion des Herzens oder ein niedriger mittlerer arterieller Blutdruck sind daher Kontraindikationen. Grundsätzlich können durch extrakorporale Systeme vielfältige Komplikationen auftreten, die eine lückenlose Überwachung von Patient und System erfordern.

Abstract

In severe acute lung failure, which cannot be handled by conventional therapeutic options, pump-driven systems (veno-venous extracorporeal membrane oxygenation, ECMO) or pumpless systems (interventional lung assist, iLA) can be used for extracorporeal lung assist.

A veno-venous ECMO is indicated in refractory hypoxaemia and/or in severe respiratory acidosis with a pH <7.2. Survival rates of more than 50% have been reported with the use of vv-ECMO in severe ARDS. Veno-venous extracorporeal systems can supply about 50–80% of the necessary gas exchange. Thus, a more protective ventilation is possible and the extent of the ventilator-induced lung injury is limited.

Pumpless devices with an arteriovenous cannulation are well suited for carbon dioxide elimination. Therefore, their primary indication is for refractory hypercapnia with respiratory acidosis. As the blood flow is generated exclusively by the arteriovenous pressure difference, a reduced cardiac pump function or a low mean arterial pressure must be considered a contraindication. Because many complications can potentially occur with the use of extracorporeal systems, close surveillance of the patient and device is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Abbreviations

ALI:

Acute lung injury

aPTT:

Activated partial thromboplastin time

ARDS:

Acute respiratory distress syndrome

CESAR:

Conventional ventilation or ECMO for severe adult respiratory failure

COPD:

Chronic obstructive pulmonary disease

ECMO:

Extracorporeal membrane oxygenation

ELSO:

Extracorporeal Life Support Organization

FIO2 :

Fraction of inspired oxygen

HFOV:

Hochfrequenz-Oszillationsventilation

HIT II:

Heparininduzierte Thrombozytopenie Typ II

iLA:

Interventional Lung Assist

LIS:

Lung injury score

MAP:

Mean arterial pressure

NAVA:

Neurally adjusted ventilatory assist

PAVK:

Periphere arterielle Verschlusskrankheit

pECLA:

Pumpless extracorporeal lung assist

PEEP:

Positive end-expiratory pressure

PLS:

Permanent life support

va:

Venoarteriell

VILI:

Ventilator-induced lung injury

vv:

Venovenös

Literatur

  1. Arlt M, Philipp A, Zimmermann M et al (2008) First experience with a new miniaturized life support system for mobile percutaneous cardiopulmonary bypass. Resuscitation 77:345–350

    Article  PubMed  Google Scholar 

  2. Beiderlinden M, Eikermann M, Boes T et al (2006) Treatment of severe acute respiratory distress syndrome: role of extracorporeal gas exchange. Intensive Care Med 32:1627–1631

    Article  PubMed  Google Scholar 

  3. Bein T, Scherer MN, Philipp A et al (2005) Pumpless extracorporeal lung assist (pECLA) in patients with acute respiratory distress syndrome and severe brain injury. J Trauma 58:1294–1297

    Article  PubMed  Google Scholar 

  4. Bein T, Weber F, Philipp A et al (2006) A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med 34:1372–1377

    Article  PubMed  Google Scholar 

  5. Brogan TV, Thiagarajan RR, Rycus PT et al (2009) Extracorporeal membrane oxygenation in adults with severe respiratory failure: a multi-center database. Intensive Care Med 35:2105–2114

    Article  CAS  PubMed  Google Scholar 

  6. Brun-Buisson C, Minelli C, Bertolini G et al (2004) Epidemiology and outcome of acute lung injury in European intensive care units. Intensive Care Med 30:51–61

    Article  PubMed  Google Scholar 

  7. Combes A, Leprince P, Luyt CE et al (2008) Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med 36:1404–1411

    Article  PubMed  Google Scholar 

  8. Elliot SC, Paramasivam K, Oram J et al (2007) Pumpless extracorporeal carbon dioxide removal for life-threatening asthma. Crit Care Med 35:945–948

    Article  PubMed  Google Scholar 

  9. Fischer F, Simon AR, Welte T et al (2006) Bridge to lung transplantation with the novel pumpless interventional lung assist device NovaLung. J Thorac Cardiovasc Surg 131:719–723

    Article  PubMed  Google Scholar 

  10. Gattinoni L, Pesenti A, Mascheroni D et al (1986) Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA 256:881–886

    Article  CAS  PubMed  Google Scholar 

  11. Hemmila MR, Rowe SA, Boules TN et al (2004) Extracorporeal life support for severe acute respiratory distress syndrome in adults. Ann Surg 240:595–607

    PubMed  Google Scholar 

  12. Hill JD, O‘Brien TG, Murray JJ et al (1972) Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med 286:629–634

    Article  CAS  PubMed  Google Scholar 

  13. Horton S, Thuys C, Bennett M et al (2004) Experience with the Jostra Rotaflow and Quadrox D oxygenator for ECMO. Perfusion 19:17–23

    Article  CAS  PubMed  Google Scholar 

  14. Jackson A, Cropper J, Pye R et al (2008) Use of extracorporeal membrane oxygenation as a bridge to primary lung transplant: 3 consecutive, successful cases and a review of the literature. J Heart Lung Transplant 27:348–352

    Article  PubMed  Google Scholar 

  15. Karagiannidis C, Lubnow M, Philipp A et al (2010) Autoregulation of ventilation with neurally adjusted ventilatory assist on extracorporeal lung assist. Intensive Care Med, Aug 6, [epub ahead of print]

  16. Kolla S, Awad SS, Rich BP et al (1997) Extracorporeal life support for 100 adult patients with severe respiratory failure. Ann Surg 226:544–566

    Article  CAS  PubMed  Google Scholar 

  17. Lewandowski K, Roissaint R, Pappert D et al (1997) High survival rate in 122 ARDS patients managed according to a clinical algorithm including extracorporeal membrane oxygenation. Intensive Care Med 23:819–835

    Article  CAS  PubMed  Google Scholar 

  18. Liebold A, Reng CM, Philipp A et al (2000) Pumpless extracorporeal lung assist – experience with the first 20 cases. Eur J Cardiothorac Surg 17:608–613

    Article  CAS  PubMed  Google Scholar 

  19. Lubnow M, Luchner A, Philipp A et al (2010) Combination of high frequency oscillatory ventilation and interventional lung assist in severe acute respiratory distress syndrome. J Crit Care, Jan 13 [epub ahead of print]

  20. Mols G, Loop T, Geiger K et al (2000) Extracorporeal membrane oxygenation: a ten-year experience. Am J Surg 180:144–154

    Article  CAS  PubMed  Google Scholar 

  21. Morris AH, Fallace CJ, Menlove RL et al (1994) Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome. Am J Respir Crit Care Med 149:295–305

    CAS  PubMed  Google Scholar 

  22. Mortensen JD (1987) An intravenacaval blood gas exchange (IVCB-GE) device: a preliminary report. Trans Am Soc Artif Intern Organs 33:570–573

    CAS  Google Scholar 

  23. Müller T, Lubnow M, Philipp A et al (2009) Extracorporeal pumpless interventional lung assist in clinical practice: determinants of efficacy. Eur Respir J 33:551–558

    Article  PubMed  Google Scholar 

  24. Müller T, Philipp A, Luchner A et al (2009) A new miniaturized system for extracorporeal membrane oxygenation in adult respiratory failure. Crit Care 13:R205

    Article  PubMed  Google Scholar 

  25. Peek GJ, Moore HM, Moore N et al (1997) Extracorporeal membrane oxygenation for adult respiratory failure. Chest 112:759–764

    Article  CAS  PubMed  Google Scholar 

  26. Peek GJ, Mugford M, Tiruvoipati R et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374:1351–1363

    Article  PubMed  Google Scholar 

  27. Philipp A, Behr R, Reng M et al (1998) Pumpless extracorporeal lung assist. J Extra Corpor Technol 30:38–41

    Google Scholar 

  28. Phua J, Badia JR, Adhikari NKJ et al (2009) Has mortality from acute respiratory distress syndrome decreased over time? A systematic review. Am J Respir Crit Care Med 179:220–227

    Article  PubMed  Google Scholar 

  29. Reng M, Philipp A, Kaiser M et al (2000) Pumpless extracorporeal lung assist and adult respiratory distress syndrome. Lancet 356:219–220

    Article  CAS  PubMed  Google Scholar 

  30. Rubenfeld GD, Caldwell E, Peabody E et al (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693

    Article  CAS  PubMed  Google Scholar 

  31. Schuerer DJ, Kolovos NS, Boyd KV, Coopersmith CM (2008) Extracorporeal membrane oxygenation: current clinical practice, coding and reimbursement. Chest 134:179–184

    Article  PubMed  Google Scholar 

  32. Schweikert WD, Pohlmann MC, Pohlmann AS et al (2009) Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373:1874–1882

    Article  Google Scholar 

  33. Vasilyev S, Schaap RN, Mortensen JD (1995) Hospital survival rates of patients with acute respiratory failure in modern respiratory intensive care units: an international, multicenter, prospective survey. Chest 107:1083–1088

    Article  CAS  PubMed  Google Scholar 

  34. Weber-Carstens S, Bercker S, Hommel M et al (2009) Hypercapnia in late-phase ALI/ARDS: providing spontaneous breathing using pumpless extracorporeal lung assist. Intensive Care Med 35:1100–1105

    Article  CAS  PubMed  Google Scholar 

  35. Zapol WM, Snider MT, Hill JD et al (1979) Extracorporeal membrane oxygenation in severe respiratory failure. A randomised prospective study. JAMA 242:2193–2196

    Article  CAS  PubMed  Google Scholar 

  36. Zimmermann M, Bein T, Arlt M et al (2009) Pumpless extracorporeal interventional lung assist in patients with acute respiratory distress syndrome: a prospective pilot study. Crit Care 13:R10

    Article  PubMed  Google Scholar 

  37. Zimmermann M, Bein T, Philipp A et al (2006) Interhospital transportation of patients with severe lung failure on pumpless extracorporeal lung assist. Br J Anaesth 96:63–66

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: TM erhielt Vortragshonorare von der Firma Maquet Cardiopulmonary AG. ML gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, T., Lubnow, M. Extrakorporale Lungenunterstützungssysteme. Pneumologe 7, 441–447 (2010). https://doi.org/10.1007/s10405-010-0410-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-010-0410-5

Schlüsselwörter

Keywords

Navigation