Skip to main content
Log in

Biomarker im Management pulmonaler Infektionen

Biomarkers in the management of pulmonary infections

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Ein wesentliches Problem im Management von pulmonalen Infektionen ist, dass klinische Symptome wie Husten, Auswurf, Fieber und Dyspnoe nicht spezifisch sind für eine exakte Diagnose „respiratorische Infektion“ und vor allem nicht für die Notwendigkeit einer antibiotischen Therapie. Ein idealer Biomarker für bakterielle pulmonale Infektionen sollte eine frühzeitige Diagnose ermöglichen, einen prognostischen Wert haben und therapeutische Entscheidungen erleichtern. Die beiden klinisch verwendeten Biomarker sind das C-reaktive Protein (CRP) und das Procalcitonin (PCT). Das CRP ist sehr unspezifisch und sowohl bei bakteriellen und viralen Infektionen erhöht. PCT ist aktuell der einzige Biomarker, der für bakterielle pulmonale Infektionen spezifisch genug ist. In mehreren Interventionsstudien konnte nachgewiesen werden, dass durch eine PCT-Steuerung Häufigkeit und Dauer einer antibiotischen Therapie signifikant reduziert werden können bei gleicher klinischer Heilungsrate.

Abstract

A problem in the management of pulmonary infections is the low specificity of clinical symptoms such as cough, sputum, fever, and dyspnea for the exact diagnosis of “respiratory infection” and the need for antibiotic therapy. An ideal biomarker for bacterial pulmonary infections should allow rapid diagnosis, have prognostic value, and facilitate therapeutic decision making. The two biomarkers in actual clinical use are C-reactive protein (CRP) and procalcitonin (PCT). CRP is quite unspecific and may be elevated in bacterial as well as in viral infections. Today, PCT is the only biomarker specific enough for pulmonary infections. In several interventional studies, PCT-guided therapy has been shown to allow a significant reduction in the frequency and duration of antibiotic therapy, with a clinical cure rate comparable to that of standard therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Almirall J, Bolibar I, Toran P et al (2004) Contribution of C−reactive protein to the diagnosis and assessment of severity of community−acquired pneumonia. Chest 125:1335–1342

    Article  PubMed  Google Scholar 

  2. Boussekey N, Leroy O, Alfandari S et al (2006) Procalcitonin kinetics in the prognosis of severe community-acquired pneumonia. Intensive Care Med 32:469–472

    Article  PubMed  CAS  Google Scholar 

  3. Boussekey N, Leroy O, Georges H et al (2005) Diagnostic and prognostic values of admission procalcitonin levels in community-acquired pneumonia in an intensive care unit. Infection 33:257–263

    Article  PubMed  CAS  Google Scholar 

  4. Briel M, Schuetz P, Mueller B et al (2008) Procalcitonin-guided antibiotic use vs a standard approach for acute respiratory tract infections in primary care. Arch Intern Med 168:2000–2007

    Article  PubMed  Google Scholar 

  5. Brueckmann M, Huhle G, Lang S et al (2005) Prognostic value of plasma N-terminal pro-brain natriuretic peptide in patients with severe sepsis. Circulation 112:527–534

    Article  PubMed  CAS  Google Scholar 

  6. Christ-Crain M, Jaccard-Stolz D, Bingisser R et al (2004) Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet 363:600–607

    Article  PubMed  CAS  Google Scholar 

  7. Christ-Crain M, Morgenthaler NG, Stolz D et al (2006) Pro-adrenomedullin to predict severity and outcome in community-acquired pneumonia [ISRCTN04176397]. Crit Care 10:R96–R103

    Article  PubMed  Google Scholar 

  8. Christ-Crain M, Müller B (2007) Biomarkers in respiratory tract infections: diagnostic guides to antibiotic prescription, prognostic markers and mediators. Eur Respir J 30:556–573

    Article  PubMed  CAS  Google Scholar 

  9. Christ-Crain M, Stolz D, Bingisser R et al (2006) Procalcitonin Guidance of Antibiotic Therapy in Community-acquired Pneumonia: A Randomized Trial. Am J Respir Crit Care Med 174:84–93

    Article  PubMed  CAS  Google Scholar 

  10. Eto T (2001) A review of the biological properties and clinical implications of adrenomedullin and proadrenomedullin N-terminal 20 peptide (PAMP), hypotensive and vasodilating peptides. Peptides 22:1693–1711

    Article  PubMed  CAS  Google Scholar 

  11. Flanders SA, Stein J, Shochat G et al (2004) Performance of a bedside C-reactive protein test in the diagnosis of community-acquired pneumonia in adults with acute cough. Am J Med 116:529–535

    Article  PubMed  CAS  Google Scholar 

  12. Gibot S, Cravoisy A, Levy B et al (2004) Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med 350:451–458

    Article  PubMed  CAS  Google Scholar 

  13. Holm A, Nexoe J, Bistrup LA et al (2007) Aetiology and prediction of pneumonia in lower respiratory tract infection in primary care. Br J Gen Pract 57:547–554

    PubMed  Google Scholar 

  14. Krüger S, Ewig S, Marre R et al (2008) Procalcitonin predicts patients at low risk of death from community- acquired pneumonia. Eur Respir J 31:349–355

    Article  PubMed  Google Scholar 

  15. Krüger S, Ewig S, Kunde J et al (2009) Pro-vasopressin (copeptin) in patients with community-acquired pneumonia – influence of antibiotic pre-treatment. J Antimicrob Chemother; im Druck

  16. Krüger S, Kunde J, Hanschmann A et al (2008) Inflammatory parameters and CRB-65 score in community acquired pneumonia caused by atypical pathogens. Eur Respir J 32(Suppl):386S (Abstract)

    Google Scholar 

  17. Krüger S, Kunde J, Hanschmann A et al (2008) Pro-atrial natriuretic peptide to predict short- and long-term mortality in community-acquired pneumonia. Eur Respir J 32(Suppl):312S (Abstract)

    Google Scholar 

  18. Krüger S, Papassotiriou J, Marre R et al (2007) Pro-atrial natriuretic peptide and pro-vasopressin to predict severity and prognosis in community-acquired pneumonia. Int Care Med 33:2069–2078

    Article  Google Scholar 

  19. Luyt CE, Guérin V, Combes A et al (2005) Procalcitonin kinetics as a prognostic marker of ventilator-associated pneumonia. Am J Respir Crit Care Med 171:48–53

    Article  PubMed  Google Scholar 

  20. Maisel AS, Krishnaswamy P, Nowak RM et al (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347:161–167

    Article  PubMed  CAS  Google Scholar 

  21. Mold C, Gewurz H, Du Clos TW (1999) Regulation of complement activation by C-reactive protein. Immunopharmacol 42:23–30

    Article  CAS  Google Scholar 

  22. Müller B, Gencay MM, Gibot S et al (2007) Circulating levels of soluble triggering receptor expressed on myeloid cells (sTREM-1) in community-acquired pneumonia. Crit Care Med 35:990–991

    Article  PubMed  Google Scholar 

  23. Müller B, Morgenthaler NG, Stolz D et al (2007) Circulating levels of copeptin, a novel biomarker, in lower respiratory tract infections. Eur J Clin Invest 37:145–152

    Article  PubMed  Google Scholar 

  24. Müller B, Suess E, Schuetz P et al (2006) Circulating levels of pro-atrial natriuretic peptide in lower respiratory tract infections. J Intern Med 260:568–576

    Article  PubMed  Google Scholar 

  25. Nobre V, Harbarth S, Graf JD et al (2008) Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med 177:498–505

    Article  PubMed  CAS  Google Scholar 

  26. Oppert M, Reinicke A, Muller C et al (2002) Elevations in procalcitonin but not C-reactive protein are associated with pneumonia after cardiopulmonary resuscitation. Resuscitation 53:167–170

    Article  PubMed  CAS  Google Scholar 

  27. Schuetz P, Christ-Crain M, Thomann R et al (2009) Effect of procalcitonin-based guidelines compared with standard guidelines on antibiotic use in lower respiratory tract infections: the randomized-controlled multicenter ProHOSP trial. Crit Care 13(Suppl.1):P386 (Abstract)

    Google Scholar 

  28. Stolz D, Christ-Crain M, Bingisser R et al (2007) Antibiotic treatment of exacerbations of COPD: a randomized, controlled trial comparing procalcitonin-guidance with standard therapy. Chest 131:9–19

    Article  PubMed  CAS  Google Scholar 

  29. Stolz D, Christ-Crain M, Morgenthaler NG et al (2007) Copeptin, C-reactive protein and procalcitonin as prognostic biomarkers in acute exacerbation of COPD. Chest 131:1058–1067

    Article  PubMed  CAS  Google Scholar 

  30. Thygesen K, Alpert JS, White HD on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the redefinition of myocardial infarction (2007) Universal definition of myocardial infarction. Eur Heart J 28:2525–2538

    Article  PubMed  Google Scholar 

  31. Tillett WS, Francis T Jr (1930) Serological reactions in pneumonia with non-protein somatic fraction of pneumococcus. J Exp Med 52:561–571

    Article  CAS  Google Scholar 

  32. Vigushin DM, Pepys MB, Hawkins PN (1993) Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J Clin Invest 91:1351–1357

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krüger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krüger, S. Biomarker im Management pulmonaler Infektionen. Pneumologe 6, 203–212 (2009). https://doi.org/10.1007/s10405-008-0301-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-008-0301-1

Schlüsselwörter

Keywords

Navigation