Skip to main content
Log in

A microfluidic sperm-sorting device based on rheotaxis effect

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The ultimate challenge for assisted reproductive technologies (ARTs) is to select the most competent sperm population from a semen sample in an efficient way. In this paper, we report on an effective sperm sorting microfluidic device that exploits the rheotaxis of sperm and investigates the sperm quality sorted under various flow conditions. Rheotaxis is the ability of a sperm cell to orient itself in the direction of the flow and swim against it. A novel passively driven pumping system is reported that provides a steady flow rate while it requires no external power source. We demonstrate that sperm selected with this device at a specific flow rate have higher motility, normal morphology, and a fewer degree of DNA fragmentation compared to a control group

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbey A, Andrews FM, Halrnan LJ (1991) Gender’s role in responses to infertility. Psychol Women Q 15:295–316

    Article  Google Scholar 

  • Agarwal A, Said TM (2003) Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 9:331–345

    Article  Google Scholar 

  • Ahmadi A, Ng S-C (1999) Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool 284:696–704

    Article  Google Scholar 

  • Aitken RJ, Clarkson JS (1988) Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl 9:367–376

    Article  Google Scholar 

  • Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI (2010) Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod 25:2415–2426

    Article  Google Scholar 

  • Alvarez JG, Lasso JL, Blasco L, Nunez RC, Heyner S, Caballero PP, Storey BT (1993) Centrifugation of human spermatozoa induces sublethal damage; separation of human spermatozoa from seminal plasma by a dextran swim-up procedure without centrifugation extends their motile lifetime. Hum Reprod 8:1087–1092

    Article  Google Scholar 

  • Asghar W, Velasco V, Kingsley JL, Shoukat MS, Shafiee H, Anchan RM, Mutter GL, Tüzel E, Demirci U (2014) Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthcare Mater 3:1671–1679

    Article  Google Scholar 

  • Auger J, Eustache F, Andersen A, Irvine D, Jørgensen N, Skakkebaek N, Suominen J, Toppari J, Vierula M, Jouannet P (2001) Sperm morphological defects related to environment, lifestyle and medical history of 1001 male partners of pregnant women from four European cities. Hum Reprod 16:2710–2717

    Article  Google Scholar 

  • Bahat A, Tur-Kaspa I, Gakamsky A, Giojalas LC, Breitbart H, Eisenbach M (2003) Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat Med 9:149–150

    Article  Google Scholar 

  • Berkovitz A, Eltes F, Lederman H, Peer S, Ellenbogen A, Feldberg B, Bartoov B (2006) How to improve IVF–ICSI outcome by sperm selection. Reprod Biomed Online 12:634–638

    Article  Google Scholar 

  • Boomsma, CM, Heineman MJ, Cohlen BJ, Farquhar CM (2004) Semen preparation techniques for intrauterine insemination. Cochrane Database Syst Rev 3. https://doi.org/10.1002/14651858.CD004507.pub4

  • Brugh V 3rd, Lipshultz LI (2004) Male factor infertility: evaluation and management. Med Clin North Am 88:367

    Article  Google Scholar 

  • Carlsen E, Giwercman A, Keiding N, Skakkebæk NE (1992) Evidence for decreasing quality of semen during past 50 years. BMJ 305:609–613

    Article  Google Scholar 

  • Casey G, Shayegh S, Moreno-Cruz J, Bunzl M, Galor O, Caldeira K (2019) The impact of climate change on fertility. Environ Res Lett 14:054007

    Article  Google Scholar 

  • Cho BS, Schuster TG, Zhu X, Chang D, Smith GD, Takayama S (2003) Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem 75:1671–1675

    Article  Google Scholar 

  • Chung Y, Zhu X, Gu W, Smith GD, Takayama S (2006) Microscale integrated sperm sorter. In: Microfluidic techniques. Humana Press, pp 227–244. https://link.springer.com/protocol/10.1385/1-59259-997-4:227

  • Clark SG, Haubert K, Beebe DJ, Ferguson CE, Wheeler MB (2005) Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip 5:1229–1232

    Article  Google Scholar 

  • Cooper TG, Noonan E, Von Eckardstein S, Auger J, Baker H, Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT et al (2010) World Health Organization reference values for human semen characteristics. Hum Reprod Update 16:231245

    Google Scholar 

  • Coughlan C, Ledger WL (2008) In-vitro fertilisation. Obstet Gynaecol Reprod Med 18:300–306

    Article  Google Scholar 

  • Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, Haan EA, Chan A (2012) N Engl J Med 366:1803–1813

    Article  Google Scholar 

  • De Wagenaar B, Dekker S, de Boer HL, Bomer JG, Olthuis W, van den Berg A, Segerink LI (2016) Towards microfluidic sperm refinement: impedance-based analysis and sorting of sperm cells. Lab Chip 16:1514–1522

    Article  Google Scholar 

  • Durairajanayagam D (2018) Lifestyle causes of male infertility. Arab J Urol 16:10–20

    Article  Google Scholar 

  • Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A (2006) Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl 8:11–29

    Article  Google Scholar 

  • Foresta C, Zorzi M, Rossato M, Varotto A (1992) Sperm nuclear instability and staining with aniline blue: abnormal persistance of histones in spermatozoa in infertile men. Int J Androl 15:330–337

    Article  Google Scholar 

  • Friedrich BM, Jülicher F (2007) Chemotaxis of sperm cells. Proc Natl Acad Sci 104:13256–13261

    Article  Google Scholar 

  • Hammadeh M, Stieber M, Haidl G, Schmidt W (1998) Association between sperm cell chromatin condensation, morphology based on strict criteria, and fertilization, cleavage and pregnancy rates in an IVF program. Andrologia 30:29–35

    Article  Google Scholar 

  • Henkel RR, Schill W-B (2003) Sperm preparation for ART. Reprod Biol Endocrinol 1:108

    Article  Google Scholar 

  • Jackson RE, Bormann CL, Hassun PA, Rocha AM, Motta EL, Serafini PC, Smith GD (2010) Effects of semen storage and separation techniques on sperm DNA fragmentation. Fertil Steril 94:2626–2630

    Article  Google Scholar 

  • Kaupp UB, Kashikar ND, Weyand I (2008) Mechanisms of sperm chemotaxis. Annu Rev Physiol 70:93–117

    Article  Google Scholar 

  • Knowlton SM, Sadasivam M, Tasoglu S (2015) Microfluidics for sperm research. Trends Biotechnol 33:221–229

    Article  Google Scholar 

  • Leung W-C, Rawls WE (1977) Virion-associated ribosomes are not required for the replication of Pichinde virus. Virology 81:174–176

    Article  Google Scholar 

  • Lopez-Garcia MDC, Monson RL, Haubert K, Wheeler MB, Beebe DJ (2008) Sperm motion in a microfluidic fertilization device. Biomed Microdevice 10(5):709–718

    Article  Google Scholar 

  • Miki K, Clapham DE (2013) Rheotaxis guides mammalian sperm. Curr Biol 23:443–452

    Article  Google Scholar 

  • Modak N, Datta A, Ganguly R (2009) Cell separation in a microfluidic channel using magnetic microspheres. Microfluid Nanofluid 6:647

    Article  Google Scholar 

  • Mortimer D, Mortimer S (1992) Methods of sperm preparation for assisted reproduction. Ann Acad Med Singapore 21:517–524

    Google Scholar 

  • Nosrati R, Graham PJ, Zhang B, Riordon J, Lagunov A, Hannam TG, Escobedo C, Jarvi K, Sinton D (2017) Microfluidics for sperm analysis and selection. Nat Rev Urol 14:707

    Article  Google Scholar 

  • Oguz Y, Guler I, Erdem A, Mutlu MF, Gumuslu S, Oktem M, Bozkurt N, Erdem M (2018) The effect of swim-up and gradient sperm preparation techniques on deoxyribonucleic acid (DNA) fragmentation in subfertile patients. J Assist Reprod Genet 35:1083–1089

    Article  Google Scholar 

  • Ombelet W, Cooke I, Dyer S, Serour G, Devroey P (2008) Infertility and the provision of infertility medical services in developing countries. Hum Reprod Update 14:605–621

    Article  Google Scholar 

  • Samuel R, Feng H, Jafek A, Despain D, Jenkins T, Gale B (2018) Microfluidic—based sperm sorting & analysis for treatment of male infertility. Transl Androl Urol 7:S336

    Article  Google Scholar 

  • Suarez S, Pacey A (2006) Sperm transport in the female reproductive tract. Hum Reprod Update 12:23–37

    Article  Google Scholar 

  • Suh RS, Phadke N, Ohl DA, Takayama S, Smith GD (2003) Rethinking gamete/embryo isolation and culture with microfluidics. Hum Reprod Update 9:451–461

    Article  Google Scholar 

  • Tung C-K, Ardon F, Roy A, Koch DL, Suarez SS, Wu M (2015) Emergence of upstream swimming via a hydrodynamic transition. Phys Rev Lett 114:108102

    Article  Google Scholar 

  • Van den Bergh M, Emiliani S, Biramane J, Vannin A-S, Englert Y (1998) A first prospective study of the individual straight line velocity of the spermatozoon and its influences on the fertilization rate after intracytoplasmic sperm injection. Human Reproduction (oxford, England) 13:3103–3107

    Article  Google Scholar 

  • Virant-Klun I, Tomazevic T, Meden-Vrtovec H (2002) Sperm single-stranded DNA, detected by acridine orange staining, reduces fertilization and quality of ICSI-derived embryos. J Assist Reprod Genet 19:319328

    Article  Google Scholar 

  • Wang Y, Riordon J, Kong T, Xu Y, Nguyen B, Zhong J, You JB, Lagunov A, Hannam TG, Jarvi K et al (2019) Prediction of DNA integrity from morphological parameters using a single-sperm DNA fragmentation index assay. Advanced Science 6:1900712

    Article  Google Scholar 

  • World Health Organization (2010) WHO laboratory manual for the examination and processing of human semen. 5th edn. https://www.who.int/publications/i/item/9789241547789

  • Wikland M, Wik O, Steen Y, Söderlund B, Janson P (1987) A self-migration method for preparation of sperm for in-vitro fertilization. Hum Reprod 2:191–195

    Article  Google Scholar 

  • Worrilow K, Eid S, Woodhouse D, Perloe M, Smith S, Witmyer J, Ivani K, Khoury C, Ball G, Elliot T et al (2013) Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes—multicenter, double-blinded and randomized controlled trial. Hum Reprod 28:306–314

    Article  Google Scholar 

  • Zhang Z, Liu J, Meriano J, Ru C, Xie S, Luo J, Sun Y (2016) Human sperm rheotaxis: a passive physical process. Sci Rep 6:23553

    Article  Google Scholar 

  • Zini A, Boman JM, Belzile E, Ciampi A (2008) Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod 23:2663–2668

    Article  Google Scholar 

  • Zini A, Finelli A, Phang D, Jarvi K (2000) Influence of semen processing technique on human sperm DNA integrity. Urology 56:1081–1084

    Article  Google Scholar 

  • Zini A, Sigman M (2009) Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl 30:219–229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem Asghar.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 782 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataei, A., Lau, A.W.C. & Asghar, W. A microfluidic sperm-sorting device based on rheotaxis effect. Microfluid Nanofluid 25, 52 (2021). https://doi.org/10.1007/s10404-021-02453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-021-02453-8

Keywords

Navigation