Skip to main content
Log in

Design of microfluidic channel networks with specified output flow rates using the CFD-based optimization method

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We report an effective, easy-to-use, computational fluid dynamics-based optimization method for designing purely resistive microfluidic networks with desired flow rates at user-specified outlets. The detailed topology and shape of the microchannel networks are obtained by minimizing the fluidic resistance of channels under a fixed driving flow rate at the inlet. This proposed method allows flexibility in setting up the relative positions among the inlet and outlets so that the layout of channel networks can be compactly adjusted based on the specific design requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ai Y, Qian S (2011) Electrokinetic particle translocation through a nanopore. Phys Chem Chem Phys PCCP 13:4060

    Article  Google Scholar 

  • Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61(5):498

    Article  MathSciNet  MATH  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Methods Fluids 41(1):77

    Article  MathSciNet  MATH  Google Scholar 

  • Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Nat Acad Sci 106(34):14195

    Article  Google Scholar 

  • Cao Q, Han X, Li L (2012) Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets. J Phys D Appl Phys 45(46):465001

    Article  Google Scholar 

  • Deng YB, Wu YH, Xuan YH, Korvink JG, Liu ZY (2011) Dynamic optimization of valveless micropump. In: 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. 442–445

  • Deng Y, Liu Z, Zhang P, Liu Y, Gao Q, Wu Y (2012) A flexible layout design method for passive micromixers. Biomed Microdevices 14(5):929

    Article  Google Scholar 

  • Deng Y, Zhang P, Liu Y, Wu Y, Liu Z (2013) Optimization of unsteady incompressible Navier–Stokes flows using variational level set method. Int J Numer Methods Fluids 71(12):1475

    Article  MathSciNet  Google Scholar 

  • Deng Y, Liu Z, Zhang P, Wu Y, Korvink JG (2010) Optimization of no-moving part fluidic resistance microvalves with low Reynolds number. In: 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). 67–70. doi:10.1109/MEMSYS.2010.5442565

  • Gan Y, Luo Y, Wang M, Shi Y, Yan Y (2015) Effect of alternating electric fields on the behaviour of small-scale laminar diffusion flames. Appl Therm Eng 89:306

    Article  Google Scholar 

  • Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(3):181

    Article  MathSciNet  MATH  Google Scholar 

  • Gui L, Yu BY, Ren CL, Huissoon JP (2011) Microfluidic phase change valve with a two-level cooling/heating system. Microfluid Nanofluidics 10(2):435

    Article  Google Scholar 

  • Kumar DT, Zhou Y, Brown V, Lu X, Kale A, Yu L, Xuan X (2015) Electric field-induced instabilities in ferrofluid microflows. Microfluid Nanofluidics 19(1):43

    Article  Google Scholar 

  • Li B, Zhou W, Yan Y, Han Z, Ren L (2013) Numerical modelling of electroosmotic driven flow in nanoporous media by Lattice Boltzmann method. J Bion Eng 10(1):90

    Article  Google Scholar 

  • Li C, Xu J, Ma B (2015) A self-powered microfluidic monodispersed droplet generator with capability of multi-sample introduction. Microfluid Nanofluidics 18(5–6):1067

    Article  Google Scholar 

  • Li XB, Oishi M, Matsuo T, Oshima M, Li FC (2016) Measurement of viscoelastic fluid flow in the curved microchannel using digital holographic microscope and polarized camera. J Fluids Eng 138(9):091401

    Article  Google Scholar 

  • Liang L, Xuan X (2012) Diamagnetic particle focusing using ferromicrofluidics with a single magnet. Microfluid Nanofluidics 13(4):637

    Article  Google Scholar 

  • Lin S, Zhao L, Guest JK, Weihs TP, Liu Z (2015) Topology optimization of fixed-geometry fluid diodes. J Mech Des 137(8):081402. doi:10.1115/1.4030297

    Article  Google Scholar 

  • Liu Z, Gao Q, Zhang P, Xuan M, Wu Y (2011) Topology optimization of fluid channels with flow rate equality constraints. Struct Multidiscip Optim 44(1):31

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Z, Deng Y, Lin S, Xuan M (2012) Optimization of micro Venturi diode in steady flow at low Reynolds number. Eng Optim 44(11):1389

    Article  Google Scholar 

  • Lu X, Hsu JP, Xuan X (2014) Exploiting the wall-induced non-inertial lift in electrokinetic flow for a continuous particle separation by size. Langmuir 31(1):620

    Article  Google Scholar 

  • Ma Y, Yeh LH, Qian S, Hsu JP, Tseng S (2014) Analytical model for surface charge property of pH-regulated nanorods. Electrochem Commun 45:75

    Article  Google Scholar 

  • Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515

    Article  Google Scholar 

  • Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng 65(7):975

    Article  MathSciNet  MATH  Google Scholar 

  • Qian S, Bau HH (2002) A chaotic electroosmotic stirrer. Anal Chem 74(15):3616

    Article  Google Scholar 

  • Ralf S, Martin B, Thomas P, Stephan H (2012) Droplet based microfluidics. Rep Prog Phys 75(1):016601

    Article  Google Scholar 

  • Song Y, Wang C, Li M, Pan X, Li D (2016) Focusing particles by induced charge electrokinetic flow in a microchannel. Electrophoresis 37(4):666

    Article  Google Scholar 

  • Thompson SM, Paudel B, Jamal T, Walters D (2014) Numerical investigation of multistaged tesla valves. J Fluids Eng 136(8):081102

    Article  Google Scholar 

  • Wang SS, Huang XY, Yang C (2010) Valveless micropump with acoustically featured pumping chamber. Microfluid Nanofluidics 8(4):549

    Article  Google Scholar 

  • Wang C, Song Y, Pan X, Li D (2016) A novel microfluidic valve controlledby induced charge electro-osmotic flow. J Micromech Microeng 26(7):75002

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368

    Article  Google Scholar 

  • Worner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluidics 12:841

    Article  Google Scholar 

  • Xuan XC, Zhu JJ, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluidics 9(1):1

    Article  Google Scholar 

  • Xuan X, Li D (2015) Joule heating in electrokinetic flow: theoretical models. Encycl Microfluid Nanofluid, Springer, New York, pp 1487–1498

    Google Scholar 

  • Zhang C, Xing D, Li Y (2007) Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends. Biotechnol Adv 25(5):483

    Article  Google Scholar 

  • Zhao C, Yang C (2011) AC field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel. Electrophoresis 32(5):629

    Article  Google Scholar 

  • Zhou T, Liu Z, Wu Y, Deng Y, Liu Y, Liu G (2013) Hydrodynamic particle focusing design using fluid–particle interaction. Biomicrofluidics 7:054104

    Article  Google Scholar 

  • Zhou T, Xu Y, Liu Z, Joo SW (2015) An enhanced one-layer passive microfluidic mixer with an optimized lateral structure with the Dean effect. J Fluids Eng 137(9):091102

    Article  Google Scholar 

  • Zhou T, Wang H, Shi L, Liu Z, Joo S (2016a) An enhanced electroosmotic micromixer with an efficient asymmetric lateral structure. Micromachines 7(12):218

    Article  Google Scholar 

  • Zhou T, Yeh LH, Li FC, Mauroy B, Joo S (2016b) Deformability-based electrokinetic particle separation. Micromachines 7(9):170

    Article  Google Scholar 

  • Zhu J, Liang L, Xuan X (2012) On-chip manipulation of nonmagnetic particles in paramagnetic solutions using embedded permanent magnets. Microfluid Nanofluidics 12(1–4):65

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51275504, 51405465, 51605124, 51675506), Science and Technology Development Plan of Jilin Province (No. 20140519007JH), Scientific Research Foundation of Hainan University (No. Kyqd1569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Liu.

Additional information

This article is part of the topical collection “2016 International Conference of Microfluidics, Nanofluidics and Lab-on-a-Chip, Dalian, China” guest edited by Chun Yang, Carolyn Ren and Xiangchun Xuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 805 KB)

Supplementary material 2 (pdf 2157 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Liu, T., Deng, Y. et al. Design of microfluidic channel networks with specified output flow rates using the CFD-based optimization method. Microfluid Nanofluid 21, 11 (2017). https://doi.org/10.1007/s10404-016-1842-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1842-y

Keywords

Navigation