Skip to main content
Log in

All-silica microfluidic optical stretcher with acoustophoretic prefocusing

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Acoustophoresis is a widely reported and used technique for microparticle manipulation and separation. In the study described here, acustophoresis is employed to prefocus the flow (i.e., focusing occurring upstream of the analysis region) in a microfluidic chip intended for optical trapping and stretching. The whole microchip is made of silica with optical waveguides integrated by femtosecond laser writing. The acoustic force is produced by driving an external piezoelectric ceramic attached underneath the microchip at the chip resonance frequency. Thanks to an efficient excitation of acoustic waves in both water and glass, acoustophoretic focusing is observed along the channel length (>40 mm) and it is successfully demonstrated both with polystyrene beads, swollen red blood cell, and cells from mouse fibroblast cellular lines (L929). Moreover, by comparing results of cell stretching measurements, we demonstrate that acoustic waves do not alter the optical deformability of the cells and that the acoustic prefocusing results in a considerable enhancement of throughput in optical stretching experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JD, Ebbesen CL, Barnkob R, Yang AHJ, Soh HT, Bruus H (2012) High-throughput, temperature-controlled microchannel acoustophoresis device made with rapid prototyping. J Micromech Microeng 22(7):075017. doi:10.1088/0960-1317/22/7/075017

    Article  Google Scholar 

  • Bellini N, Vishnubhatla KC, Bragheri F, Ferrara L, Minzioni P, Ramponi R, Cristiani I, Osellame R (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18(5):4679–4688

    Article  Google Scholar 

  • Bellini N, Bragheri F, Cristiani I, Guck J, Osellame R, Whyte G (2012) Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher. Biomed Opt Express 3(10):2658–2668

    Article  Google Scholar 

  • Bruus H (2008) Theoretical microfluidics. Oxford University Press, Oxford, p 364. Retrieved from http://ukcatalogue.oup.com/product/9780199235087

  • Bruus H (2012) Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 12(1):20–28. doi:10.1039/c1lc20770a

    Article  Google Scholar 

  • Büyükkoçak S, Özer MB, Çetin B (2014) Numerical modeling of ultrasonic particle manipulation for microfluidic applications. Microfluid Nanofluid 17(6):1025–1037. doi:10.1007/s10404-014-1398-7

    Article  Google Scholar 

  • Chung AJ, Gossett DR, Di Carlo D (2012) Three dimensional, sheathless, and high-throughput microparticle inertial focusing through geometry-induced secondary flows. Small. doi:10.1002/smll.201202413

    Google Scholar 

  • De Souza N (2011) Single-cell methods. Nat Methods 9(1):35-35. doi:10.1038/nmeth.1819

    Google Scholar 

  • Devendran C, Gralinski I, Neild A (2014) Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel. Microfluid Nanofluid 17(5):879–890. doi:10.1007/s10404-014-1380-4

    Article  Google Scholar 

  • Dochow S, Krafft C, Neugebauer U, Bocklitz T, Henkel T, Mayer G, Popp J (2011) Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 11(8):1484–1490. doi:10.1039/c0lc00612b

    Article  Google Scholar 

  • Faigle C, Lautenschläger F, Whyte G, Homewood P, Martín-Badosa E, Guck J (2015) A monolithic glass chip for active single-cell sorting based on mechanical phenotyping. Lab Chip 15(5):1267–1275. doi:10.1039/c4lc01196a

    Article  Google Scholar 

  • Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci 109(20):7631–7635. doi:10.1073/pnas.1200107109

    Article  Google Scholar 

  • Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Käs J (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81(2):767–784

    Article  Google Scholar 

  • Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698

    Article  Google Scholar 

  • Khoury M, Barnkob R, Laub Busk L, Tidemand-Lichtenberg P, Bruus H, Berg-Sørensen K (2012) Optical stretching on chip with acoustophoretic prefocusing. In: Dholakia K, Spalding GC (eds) SPIE nanoscience + engineering. International Society for Optics and Photonics, p 84581E. doi:10.1117/12.945923

  • Knight J, Vishwanath A, Brody J, Austin R (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863–3866. doi:10.1103/PhysRevLett.80.3863

    Article  Google Scholar 

  • Kotari H, Motosuke M (2014) Simple applications of microparticle transportation by tender optical scattering force. Microfluid Nanofluid. doi:10.1007/s10404-014-1459-y

    Google Scholar 

  • Kunstmann-Olsen C, Hoyland JD, Rubahn H-G (2011) Influence of geometry on hydrodynamic focusing and long-range fluid behavior in PDMS microfluidic chips. Microfluid Nanofluid 12(5):795–803. doi:10.1007/s10404-011-0923-1

    Article  Google Scholar 

  • Lai C-W, Hsiung S-K, Yeh C-L, Chiou A, Lee G-B (2008) A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch. Sens Actuators B Chem 135(1):388–397. doi:10.1016/j.snb.2008.08.041

    Article  Google Scholar 

  • Lautenschläger F, Paschke S, Schinkinger S, Bruel A, Beil M, Guck J (2009) The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc Natl Acad Sci 106(37):15696–15701. doi:10.1073/pnas.0811261106

    Article  Google Scholar 

  • Lee G-B, Chang C-C, Huang S-B, Yang R-J (2006) The hydrodynamic focusing effect inside rectangular microchannels. J Micromech Microeng 16(5):1024–1032. doi:10.1088/0960-1317/16/5/020

    Article  Google Scholar 

  • Lincoln B, Schinkinger S, Travis K, Wottawah F, Ebert S, Sauer F, Guck J (2007) Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed Microdevices 9(5):703–710. doi:10.1007/s10544-007-9079-x

    Article  Google Scholar 

  • Maloney JM, Nikova D, Lautenschläger F, Clarke E, Langer R, Guck J, Van Vliet KJ (2010) Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys J 99(8):2479–2487. doi:10.1016/j.bpj.2010.08.052

    Article  Google Scholar 

  • Otto O, Rosendahl P, Mietke A, Golfier S, Herold C, Klaue D, Girardo S, Pagliara S, Ekpenyong A, Jacobi A, Wobus M, öpfner N, Keyser UF, Mansfeld J, Fischer-Friedrich E, Guck J (2015) Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods 12(3):199–202. doi:10.1038/NMETH.3281

  • Paie P, Bragheri F, Vazquez RM, Osellame R (2014) Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels. Lab Chip 14(11):1826–1833. doi:10.1039/C4LC00133H

    Article  Google Scholar 

  • Remmerbach TW, Wottawah F, Dietrich J, Lincoln B, Wittekind C, Guck J (2009) Oral cancer diagnosis by mechanical phenotyping. Cancer Res 69(5):1728–1732. doi:10.1158/0008-5472.can-08-4073

    Article  Google Scholar 

  • Sajeesh P, Sen AK (2013) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17(1):1–52. doi:10.1007/s10404-013-1291-9

    Article  Google Scholar 

  • Yang T, Paiè P, Nava G, Bragheri F, Vazquez RM, Minzioni P, Cristiani I (2015) An integrated optofluidic device for single-cell sorting driven by mechanical properties. Lab Chip 15(5):1262–1266. doi:10.1039/C4LC01496K

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from COST action MP1205 for two short-term scientific missions of GN to DTU as well as Fondazione Cariplo through the Grant “Optofluidic chips for the study of cancer cell mechanical properties and invasive capacities” (Ref. # 2011-0370). In addition, we acknowledge enlightening discussions with Peter Barkholt Müller and Henrik Bruus, and we thank Livia Visai and Nora Bloise for the L929 cells growth, preparation, and suspension.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Nava.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 1940 kb)

Supplementary material 2 (AVI 1054 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nava, G., Bragheri, F., Yang, T. et al. All-silica microfluidic optical stretcher with acoustophoretic prefocusing. Microfluid Nanofluid 19, 837–844 (2015). https://doi.org/10.1007/s10404-015-1609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1609-x

Keywords

Navigation