Skip to main content
Log in

Induced-charge electro-osmosis of polymer-containing fluid around a metallic rod

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Induced-charge electro-osmotic (ICEO) flow of polymer-containing electrolyte solution around a cylindrical gold-coated stainless steel rod under AC electric field is measured by micro-particle image velocimetry (micro-PIV) for the first time. The ICEO flows as functions of the amount of non-ionic PEG (polyethylene glycol), cationic PDADMA (polydiallyldimethylammonium chloride), and anionic PVSASS (polyvinylsulfonic acid sodium salt) polymers added into the salt solution, frequency, and strength of the AC electric field are measured. The ICEO flow of polymer-containing fluid around the rod is quadrupolar with four vortices and is proportional to the square of imposed electric field. The ICEO flow velocity exponentially decreases with an increased concentration of neutral PEG. Ionic polyelectrolytes significantly increase ICEO velocities due to the enriched net charge within the induced electric double layer arising from the electrostatic interaction between the polarized rod’s surface and the charged polyelectrolytes in ionic polymer solution. In addition, polymer concentration affects the dependence of the ICEO flow on the frequency of AC electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Babaie A, Saidi MH, Sadeghi A (2012) Electroosmotic flow of power-law fluids with temperature dependent properties. J Non-Newtonian Fluid Mech 185–186:49–57

    Article  Google Scholar 

  • Berli CLA (2010) Output pressure and efficiency of electrokinetic pumping of non-Newtonian fluids. Microfluid Nanofluid 8:197–207

    Article  Google Scholar 

  • Berli CLA, Olivares ML (2008) Electrokinetic flow of non-Newtonian fluids in microchannels. J Colloid Interface Sci 320:582–589

    Article  Google Scholar 

  • Canpolat C, Qian S, Beskok A (2013a) Micro-PIV measurements of induced-charge electro-osmosis around a metal rod. Microfluidics Nanofluid 14:153–162

    Google Scholar 

  • Canpolat C, Zhang M, Rosen W, Qian S, Beskok A (2013b) Induced-charge electro-osmosis around touching metal rods. J Fluids Eng-Trans ASME 135:021103-1-10

    Google Scholar 

  • Chakraborty S (2007) Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Anal Chim Acta 605:175–184

    Article  Google Scholar 

  • Chang F-M, Tsao H-K (2007) Drag reduction in electro-osmosis of polymer solutions. Appl Phys Lett 90:194105

    Article  Google Scholar 

  • Chayer B, Pitts KL, Cloutier G, Fenech M (2012) Velocity measurement accuracy in optical microhemodynamics:experiment and simulation. Physiol Meas 33:1585–1602

    Article  Google Scholar 

  • Choi W-S, Joo SW, Lim G (2012) Electroosmotic flows of viscoelastic with asymmetric electrochemical boundary conditions. J Non-Newtonian Fluid Mech 187–188:1–7

    Article  Google Scholar 

  • Das S, Chakraborthy S (2006) Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal Chim Acta 559:15–24

    Article  Google Scholar 

  • Degre G, Joseph P, Tabeling P, Lerouge S, Cloitre M, Ajdari A (2006) Rheology of complex fluids by particle image velocimetry in microchannels. Appl Phys Lett 89:024104

    Article  Google Scholar 

  • Devarakonda SB, Han J, Ahn CH, Banerjee RK (2007) Bioparticle separation in non-Newtonian fluid using pulsed flow in micro-channels. Microfluid Nanofluid 3:391–401

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • Hadigol M, Nosrati R, Nourbakhsh A, Raisee M (2011) Numerical study of electroosmotic micromixing of non-Newtonian fluids. J Non-Newtonian Fluid Mech 166:965–971

    Article  Google Scholar 

  • Harnett CK, Templeton J, Dunphy-Guzman KA, Senousya YM, Kanouff MP (2008) Model based design of a microfluidic mixer driven by induced charge Electroosmosis. Lab Chip 8:565–572

    Article  Google Scholar 

  • Hidema R, Yamada N, Furukawa H (2012) Diagnosis at a glance of biological non-Newtonian fluids with Film Interference Flow Imaging (FIFI). Smart sensor phenomena, technology, networks, and systems integration, Proceedings of SPIE, Vol. 8346, Article No. 83461D, 2012

  • Holmberg K, Jonsson B, Kronberg B, Lindman B (2003) Surfactants and polymers in aqueous solution, 2nd edn., England

  • Hunter RJ (2001) Foundations of colloid science. Oxford University Press, New York

    Google Scholar 

  • Kikuchi K, Mochizuki O (2011) Micro-PIV(micro particle image velocimetry) visualization of red blood cells (RBCs) sucked by a female mosquito 22:064002-1-9

  • Kolodner P (1998) Oscillatory convection in viscoelastic DNA suspensions. J Non-Newton Fluid Mech 75:167–192

    Article  MATH  MathSciNet  Google Scholar 

  • Lee JSH, Ren CL, Li D (2005) Effects of surface heterogeneity on flow circulation in electroosmotic flow in microchannels. Anal Chim Acta 530:273–282

    Article  Google Scholar 

  • Levitan JA, Devasenathipathy S, Studer V, Ben Y, Thorsen T, Squires TM, Bazant MZ (2005) Experimental observation of induced-charge electro-osmosis around a metal wire in a microchannel. Colloids Surf A Physicochem Eng Asp 267:122–132

    Article  Google Scholar 

  • Ochowiak M, Broniarz-Press L, Rozanska S, Rozanski J (2012) The effect of extensional viscosity on the effervescent atomization of polyacrylamide solutions. J Ind Eng Chem 18:2028–2035

    Article  Google Scholar 

  • Olivares ML, Vera-Candioti L, Berli CLA (2009) The EOF of polymer solutions. Electrophoresis 30:921–929

    Article  Google Scholar 

  • Popa I, Gillies G, Papastavrou G, Borkovec M (2010) Attractive and repulsive electrostatic forces between positively charged latex particles in the presence of anionic linear polyelectrolytes. J Phys Chem 114:3170–3177

    Google Scholar 

  • Reinke W, Johnson PC, Gaehtgens P (1986) Effect of shear rate variation on apparent viscosity of human blood in tubes of 24 to 94 μm diameter 59:124–132

  • Sanchez PG, Ramos A, Gonzales A, Green NG, Morgan H (2009) Flow reversal in travelling-wave electrokinetics: an analysis of forces. Langmuir 25(9):4988–4997

    Article  Google Scholar 

  • Sanchez S, Arcos J, Bautista O, Méndez F (2012) Joule heating effect on a purely electroosmotic flow of non-Newtonian fluids in a slit microchannel. J Non-Newton Fluid Mech. http://dx.doi.org/10.1016/j.jnnfm.2012.09.014

  • Squires TM, Bazant MZ (2004) Induced-charge electro-osmosis. J Fluid Mech 509:217–252

    Article  MATH  MathSciNet  Google Scholar 

  • Squires TM, Bazant MZ (2006) Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J Fluid Mech 560:65–101

    Article  MATH  MathSciNet  Google Scholar 

  • Stojilkovic KS, Berezhkovskii AM, Zitserman VY, Bezrukov SM (2003) Conductivity and microviscosity of electrolyte solutions containing polyethylene glycols. J Chem Phys 119:6973–6978

    Article  Google Scholar 

  • Tadmor R, Zapata EH, Chen N, Pincus P, Israelachvili JN (2002) Debye length and double-layer forces in polyelectrolyte solutions. Macromolecules 35:2380–2388

    Article  Google Scholar 

  • Tang GH, Li XF, He YL, Tao WQ (2009) Electroosmotic flow of non-Newtonian fluid in microchannels. J Non-Newton Fluid Mech 157:133–137

    Article  MATH  Google Scholar 

  • Wu Z, Li D (2009) Induced-charge electrophoretic motion of ideally polarizable particles. Anal Chim Acta 54:3960–3967

    Google Scholar 

  • Yalcin SE, Sharma A, Qian S, Joo SW, Baysal O (2010) Manipulating particles in microfluidics by floating electrodes. Electrophoresis 31:3711–3718

    Article  Google Scholar 

  • Yalcin SE, Sharma A, Qian S, Joo SW, Baysal O (2011) On-demand particle enrichment in a microfluidic channel by a locally controlled floating electrode. Sens Actuators B Chem 153:277–283

    Article  Google Scholar 

  • Zhang M, Ai Y, Sharma A, Joo SW, Kim D-S, Qian S (2011) Electrokinetic particle translocation through a nanopore containing a floating electrode. Electrophoresis 32:1864–1874

    Article  Google Scholar 

  • Zhao C, Yang C (2011a) Electro-osmnotic mobility of non-Newtonian fluids. Biomicrofluidics 5:014110

    Article  Google Scholar 

  • Zhao C, Yang C (2011b) An exact solution for electroosmosis of non-Newtonian fluids in microchannels. J Non-Newton Fluid Mech 166:1076–1079

    Article  Google Scholar 

  • Zimmerman WB, Rees JM, Craven TJ (2006) Rheometry of non-Newtonian electrokinetic flow in a microchannel T-junction. Microfluid Nanofluid 2:481–492

    Article  Google Scholar 

Download references

Acknowledgments

Canpolat C. acknowledges financial support of The Scientific and Technological Research Council of Turkey (TUBITAK) for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Beskok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canpolat, C., Qian, S. & Beskok, A. Induced-charge electro-osmosis of polymer-containing fluid around a metallic rod. Microfluid Nanofluid 16, 247–255 (2014). https://doi.org/10.1007/s10404-013-1204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1204-y

Keywords

Navigation