Skip to main content
Log in

A full-Eulerian solid level set method for simulation of fluid–structure interactions

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a full Eulerian method, termed solid level set (SLS) method, for modeling of a class of fluid–structure interactions (FSI) problems soft solid body can deform significantly but remains nearly incompressible. The SLS method is based on the unified momentum equation framework in which the solid–fluid interactions are modeled by introducing a solid body force term and a solid–fluid interfacial force term into the Navier–Stokes equation. The key idea of the SLS method is that the deformation of the solid body is no longer tracked using a Lagrangian mesh. Instead, the solid body is tracked by introducing a reference coordinate for describing the reference state of the solid body and by introducing three dynamic level set functions on the Cartesian coordinate and one static level set functions on the reference coordinate. The SLS method is easy to implement and addresses several challenges in the simulation of FSIs in which a fixed Cartesian mesh is used for fluid flow and a Lagrangian mesh is used for tracking the solid deformation. The effectiveness of the SLS method is demonstrated by studying two FSI problems. The method is suitable for studying a wide range of problems in microfluidics, e.g., manipulation of cells in confined space and ink-jet printing of biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adalsteinsson D, Sethian JA (1995) A fast level set method for propagating interfaces. J Comput Phys 118:269–277

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchette P, Bigioni T (2006) Partial coalescence of drops at liquid interfaces. Nat Phys 2:254–257

    Article  Google Scholar 

  • Blanchette P, Bigioni T (2009) Dynamics of drop coalescence at fluid interfaces. J Fluid Mech 620:333–352

    Article  MathSciNet  MATH  Google Scholar 

  • Brackbill J, Kothe D, Zemach C (1992) A continuum method for modeling surface-tension. J Comput Phys 100(2):335–354

    Article  MathSciNet  MATH  Google Scholar 

  • Chu K, Prodanovic M (2011) Homepage of level set method library (lsmlib). http://ktchu.serendipityresearch.org/software/lsmlib/index.html. Accessed 22 Feb 2011

  • Colella P (1985) A direct Eulerian MUSCL scheme for gas-dynamics. SIAM J Sci Stat Comput 6(1):104–117

    Article  MathSciNet  MATH  Google Scholar 

  • Dunne T (2006) An Eulerian approach to fluid–structure interaction and goal-oriented mesh adaptation. Int J Numer Methods Fluids 51(9–10):1017–1039

    Article  MathSciNet  MATH  Google Scholar 

  • Enright D, Fedkiw R, Ferziger J, Mitchell I (2002) A hybrid particle level set method for improved interface capturing. J Comput Phys 183(1):83–116

    Article  MathSciNet  MATH  Google Scholar 

  • Enright D, Losasso F, Fedkiw R (2005) A fast and accurate semi-Lagrangian particle level set method. Comput Struct 83(6–7):479–490

    Article  MathSciNet  Google Scholar 

  • Guendelman E, Selle A, Losasso F, Fedkiw R (2005) Coupling water and smoke to thin deformable and rigid shells. ACM Trans Gr 24:973–981

    Article  Google Scholar 

  • Jiang G, Peng D (2000) Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J Sci Comput 21(6):2126–2143

    Article  MathSciNet  MATH  Google Scholar 

  • Leveque R, Li Z (1994) The immersed interface method for elliptic-equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31(4):1019–1044

    Article  MathSciNet  MATH  Google Scholar 

  • Marella S, Krishnan S, Liu H, Udaykumar H (2005) Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations. J Comput Phys 210(1):1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Osher S (1993) A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations. SIAM J Math Anal 24(5):1145–1152

    Article  MathSciNet  MATH  Google Scholar 

  • Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, New York, pp 25–39

    Google Scholar 

  • Pan K, Law C (2007) Dynamics of droplet-film collision. J Fluid Mech 587:1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Peng D, Merriman B, Osher S, Zhao H, Kang M (1999) A PDE-based fast local level set method. J Comput Phys 155(2):410–438

    Article  MathSciNet  MATH  Google Scholar 

  • Peskin C (1972) Flow patterns around heart valves—numerical method. J Comput Phys 10(2):252–271

    Article  MATH  Google Scholar 

  • Sethian JA (1991) The collapse of a dumbbell moving under its mean curvature. In: Concus P, Finn R, Hoffman D (eds) Geometric analysis and computer graphics. Mathematical Sciences Research Institute Publications, Springer-Verlag, New York

  • Sussman M, Almgren A, Bell J, Colella P, Howell L, Welcome M (1999) An adaptive level set approach for incompressible two-phase flows. J Comput Phys 148(1):81–124

    Article  MathSciNet  MATH  Google Scholar 

  • Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible 2-phase flow. J Comput Phys 114(1):146–159

    Article  MATH  Google Scholar 

  • Zang Y, Street R, Koseff J (1994) A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates. J Comput Phys 114(1):18–33

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao H, Freund JB, Moser RD (2008) A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. J Comput Phys 227(6):3114–3140

    Article  MathSciNet  MATH  Google Scholar 

  • Zienkiewicz O, Zhu J (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1. The recovery technique. Int J Numer Methods Eng 33(7):1331–1364

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from NSF under grant No. CBET-0936235. The authors thank the Clemson-CCIT office for generous allocation of computer time on the Palmetto cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, P., Qiao, R. A full-Eulerian solid level set method for simulation of fluid–structure interactions. Microfluid Nanofluid 11, 557–567 (2011). https://doi.org/10.1007/s10404-011-0821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0821-6

Keywords

Navigation