Skip to main content
Log in

Numerical and experimental investigations of the formation process of ferrofluid droplets

  • Research Article
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper reports both experimental and numerical investigations of the formation process of ferrofluid droplets in a flow focusing configuration with and without an applied magnetic field. In the experiment, the homogenous magnetic field was generated using an electromagnet. The magnetic field in the flow direction affects the formation process and changes the size of the droplets. The change in the droplet size depends on the magnetic field strength and the flow rates. A numerical model was used to investigate the force balance during the droplet breakup process. A linearly magnetizable fluid was assumed. Particle level set method was employed to capture the interface movement between the continuous fluid and the dispersed fluid. Results of the droplet formation process and the flow field are discussed for both cases with and without the magnetic field. Finally, experimental and numerical results are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afkhami S, Renardy Y, Renardy M, Riffle JS, St Perre T (2008) Field-induced motion of ferrofluid droplets through immiscible viscous media. J Fluid Mech 610:363–380

    Article  MATH  MathSciNet  Google Scholar 

  • Afkhami S, Tyler AJ, Renardy Y, Renardy M, St. Pierre TG, Woodward RC, Riffle JS (2010) Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J Fluid Mech 1–27

  • Bacri JC, Salin D (1982) Instability of ferrofluid magnetic drops under magnetic field. J Phys (Paris) Lett V 43:649–654

    Google Scholar 

  • Baroud CN, Delville JP, Gallaire F,Wunenburger R (2007a) Thermocapillary valve for droplet production and sorting. Phys Rev E 75(4)

  • Baroud CN, Robert De Saint Vincent M, Delville JP (2007b) An optical toolbox for total control of droplet microfluidics. Lab Chip 7(8):1029–1033

    Article  Google Scholar 

  • Brackbill JU (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354

    Article  MATH  MathSciNet  Google Scholar 

  • Dixit SS, Kim H, Vasilyev A, Eid A, Faris GW (2010) Light-driven formation and rupture of droplet bilayers. Langmuir 26(9):6193–6200

    Article  Google Scholar 

  • Friedman G, Yellen B (2005) Magnetic separation, manipulation and assembly of solid phase in fluids. Curr Opin Colloid Interface Sci 10:158–166

    Article  Google Scholar 

  • Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sens Actuators 99:592–600

    Article  Google Scholar 

  • Ho PC, Yap YF, Nguyen NT, Chai JC, Wong TN, Yobas L (2009) Thermally mediated droplet formation at a microfluidic T-junction. ASME ICNMM2009-82056

  • Korlie MS, Mukherjee A, Nita BG, Stevens JG, Trubatch AD, Yecko P (2008) Modeling bubbles and droplets in magnetic fluids. J Phys Condens Matter 20:204153

    Article  Google Scholar 

  • Kose AR, Fischer B, Mao L, Koser H (2009) Label-free cellular manipulation and sorting via biocompatible ferrofluids. Proc Natl Acad Sci USA 106:21478–21483

    Article  Google Scholar 

  • Lavrova O, Matthies G, Mitkova T, Polevikov V, Tobiska L (2006) Numerical treatment of free surface problems in ferrohydrodynamics. J Phys Condens Matter 218(38):S2657–S2669

    Article  Google Scholar 

  • Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554

    Article  Google Scholar 

  • Lehmann U, Hadjidj S, Parashar VK, Vandevyver C, Rida A, Gijs MAM (2006) Two-dimensional magnetic manipulation of microdroplets on a chip as a platform for bioanalytical applications. Sens Actuators B 117(2):457–463

    Article  Google Scholar 

  • Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng ZD, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45(16):2556–2560

    Article  Google Scholar 

  • Liu J, Nguyen NT (2010) Numerical simulation of droplet-based microfluidics—a review. Micro Nanosyst 2(3):193–201

    Google Scholar 

  • Liu J, Yap YF, Nguyen NT (2009) Behavior of microdroplets in diffuser/nozzle structures. Microfluid Nanofluid 6(6):835–846

    Article  Google Scholar 

  • Long Z, Shetty AM, Solomon MJ, Larson RG (2009) Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface. Lab Chip 9(11):1567–1575

    Article  Google Scholar 

  • Nguyen NT, Ng KM, Huang X (2006) Manipulation of ferrofluid droplets using planar coils. Appl Phys Lett 89(5):052509

    Article  Google Scholar 

  • Nguyen NT, Zhu G, Chua YC, Phan VN, Tan SH (2010) Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet. Langmuir 26(15):12553–12559

    Article  Google Scholar 

  • Nie Z, Seo M, Xu S, Lewis PC, Mok M, Kumacheva E, Whitesides GM, Garstecki P, Stone HA (2008) Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluid Nanofluid 5(5):585–594

    Google Scholar 

  • Odenbach S (2003) Ferrofluids—magnetically controlled suspensions. Colloids Surf 217:171–178

    Article  Google Scholar 

  • Osher S, sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jaacobi formulations. J Comput Phys 79(1):12–49

    Article  MATH  MathSciNet  Google Scholar 

  • Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38

    Article  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York

    MATH  Google Scholar 

  • Philip J, Rao CB, Raj B, Jayakumar T (1999) An optical technique for the detection of surface defects in ferromagnetic samples. Meas Sci Technol 10(6):N71–N75

    Article  Google Scholar 

  • Philip J, Jaykumar T, Kalyanasundaram P, Raj B (2003) A tunable optical filter. Meas Sci Technol 14:1289–1294

    Article  Google Scholar 

  • Potts HE, Barrett RK, Diver DA (2001) Dynamics of freely-suspended drops. J Phys D 34(17):2529–2536

    Article  Google Scholar 

  • Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, London

  • Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31:567–603

    Article  MathSciNet  Google Scholar 

  • Sero-Guillaume OE, Zouaoui D, Bernardin D, Brancher JP (1992) The shape of a magnetic liquid drop. J Fluid Mech 241:215–232

    Article  MATH  MathSciNet  Google Scholar 

  • Shikida M, Takayanagi K, Inouchi K, Honda H, Sato K (2006) Using wettability and interfacial tension to handle droplets of magnetic beads in a micro-chemical-analysis system. Sens Actuators B 113(1):563–569

    Article  Google Scholar 

  • Sun Y, Kwok YC, Nguyen NT (2007) A novel circular ferro-fluid driven flow-through microchip for rapid DNA amplification. 383–386

  • Sun Y, Nguyen NT, Yien CK (2008) High-throughput polymerase chain reaction in parallel circular loops using magnetic actuation. Anal Chem 80(15):6127–6130

    Article  Google Scholar 

  • Tan SH, Nguyen NT, Yobas L, Kang TG (2010) Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J Micromech Microeng 20(4):045004

    Article  Google Scholar 

  • Tsuchiya H, Okochi M, Nagao N, Shikida M, Honda H (2008) On-chip polymerase chain reaction microdevice employing a magnetic droplet-manipulation system. Sens Actuators B 130(2):583–588

    Article  Google Scholar 

  • Venkatraman S, Nixon A, Highe A (1994) Deformation behavior of poly(dimethyl siloxane) networks. II. Equilibrium swelling. J Appl Polym Sci 52(11):1619–1627

    Article  Google Scholar 

  • Yap YF, Chai JC, Wong TN, Toh KC, Zhang HY (2006) A global mass correction scheme for the level-set method. Numer Heat Transfer B 50(5):455–472

    Article  Google Scholar 

  • Yellen BB, Fridman G, Friedman G (2004) Ferrofluid lithography. Nanotechnology 15:S562–S565

    Article  Google Scholar 

  • Zahn M (2001) Magnetic fluid and nanoparticle applications to nanotechnology. J Nanopart Res 3:73–78

    Article  Google Scholar 

  • Zborowski M, Sun L, Moore LR, Stephen Williams P, Chalmers JJ (1999) Continuous cell separation using novel magnetic quadrupole flow sorter. J Magn Magn Mater 194:224–230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Trung Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Tan, SH., Yap, Y.F. et al. Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluid 11, 177–187 (2011). https://doi.org/10.1007/s10404-011-0784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0784-7

Keywords

Navigation