Skip to main content
Log in

Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper reports experimental investigations on the droplet formation and size manipulation of deionized water (DIW) and nanofluids in a microfluidic T-junction at different temperatures. Investigations of the effect of microchannel depths on the droplet formation process showed that the smaller the depth of the channel the larger the increase of droplet size with temperature. Sample nanofluids were prepared by dispersing 0.1 volume percentage of titanium dioxide (TiO2) nanoparticles of 15 nm and 10 nm × 40 nm in DIW for their droplet formation experiments. The heater temperature also affects the droplet formation process. Present results demonstrate that nanofluids exhibit different characteristics in droplet formation with the temperature. Addition of spherical-shaped TiO2 (15 nm) nanoparticles in DIW results in much smaller droplet size compared to the cylindrical-shaped TiO2 (10 nm × 40 nm) nanoparticles. Besides changing the interfacial properties of based fluid, nanoparticles can influence the droplet formation of nanofluids by introducing interfacial slip at the interface. Other than nanofluid with cylindrical-shaped nanoparticles, the droplet size was found to increase with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–41

    Article  Google Scholar 

  • Burns MA, Johnson BN, Brahmasandra SN, Handique K, Webster JR, Krishnan M, Sammarco TS, Man PM, Jones D, Heldsinger D, Mastrangelo CH, Burke DT (1998) An integrated nanoliter DNA analysis device. Science 282:484–487

    Article  Google Scholar 

  • Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40:R319–R336

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidics T-junction–scaling and mechanisms of break-up. Lab Chip 6:437–446

    Article  Google Scholar 

  • Guttenberg Z, Müller H, Habermüller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5:308–317

    Article  Google Scholar 

  • He M, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets. Anal Chem 77:1539–1544

    Article  Google Scholar 

  • Joanicot M, Ajdari A (2005) Droplet control for microfluidics. Science 309:887–888

    Article  Google Scholar 

  • Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer 121:280–289

    Article  Google Scholar 

  • Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Appl Phys Lett 99:084314-1–084314-8

    Google Scholar 

  • Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503-1–054503-4

    Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44:367–373

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2008a) Thermophysical and electrokinetic properties of nanofluids—a critical review. Appl Therm Eng (in press). doi:10.1016/j.applthermaleng.2008.01.005

  • Murshed SMS, Tan SH, Nguyen NT (2008b) Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. J Phys D Appl Phys 41:085502

    Google Scholar 

  • Nguyen NT, Lassemono S, Chollet F (2006) Optical detection for droplet size control in microfluidic droplet-based analysis systems. Sens Actuators B 117:431–436

    Article  Google Scholar 

  • Nguyen NT, Ting TH, Yap YF, Wong TN, Chai JCK, Ong WL, Zhou JL, Tan SH, Yobas L (2007) Thermally mediated droplet formation in microchannels. Appl Phys Lett 91:084102

    Google Scholar 

  • Nie ZH, Seo MS, Xu SQ, Lewis PC, Mok M, Kumacheva E, Whitesides GM, Garstecki P, Stone HA (2008) Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluid Nanofluid. doi:10.1007/s10404-008-0271-y

  • Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2:24–26

    Article  Google Scholar 

  • Ong WL, Hua JS, Zhang BL, Teo TY, Zhuo JL, Nguyen NT, Ranganathan R, Yobas L (2007) Experimental and computational analysis of droplet formation in a high-performance flow-focusing geometry. Sens Actuators A 138:203–212

    Article  Google Scholar 

  • Schröder V, Behrend O, Schubert H (1998) Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes. J Colloid Interface Sci 202:334–340

    Article  Google Scholar 

  • Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356

    Article  Google Scholar 

  • Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond A 146:501–523

    Article  Google Scholar 

  • Thorsen T, Roberts RW, Amold FH, Quake SR (2001) Dynamic patterned formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

    Article  Google Scholar 

  • Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203-1–061203-16

    Article  Google Scholar 

  • Ting TH, Yap YF, Nguyen NT, Wong TN, Chai JCK, Yobas L (2006) Thermally mediated breakup of drops in microchannels. Appl Phys Lett 89:234101

    Google Scholar 

  • Van der Graaf S, Steegmans MLJ, Schroen CGPH, Van der Sman RGM, Boom RM (2006) Lattice Boltzmann simulations of droplets formation in a T-shaped microchannel. Langmuir 22:4144–4152

    Article  Google Scholar 

  • Wen D, Ding Y (2006) Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (nanofluids). IEEE Trans Nanotechnol 5:220–227

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Xu JH, Li SW, Tan J, Wang YJ, Luo GS (2006a) Preparation of highly monodisperse droplet in a T-Junction microfluidics device. AIChE J 52:3005–3010

    Article  Google Scholar 

  • Xu JH, Li SW, Chen GG, Luo GS (2006b) Formation of monodisperse microbubbles in a microfluidic device. AIChE J 52:2254–2259

    Article  Google Scholar 

  • Zheng B, Roach LS, Ismagilov RF (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc 125:11170–11171

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Agency of Science, Technology and Research (A*STAR), Singapore (grant number SERC 052 101 0108 “Droplet-based micro/nanofluidics”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Trung Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murshed, S.M.S., Tan, S.H., Nguyen, N.T. et al. Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction. Microfluid Nanofluid 6, 253–259 (2009). https://doi.org/10.1007/s10404-008-0323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0323-3

Keywords

Navigation