Skip to main content
Log in

Nanohole arrays in metal films as optofluidic elements: progress and potential

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Subwavelength holes in metal films exhibit coupled optical phenomena specific to structure geometry, incident light and properties of the near-surface medium. As optofluidic components, nanohole arrays in metal films present several opportunities. This review provides an overview of the unique optical characteristics of such arrays, with emphasis on their application in the micro and nano-fluidic environment. The majority of contributions in this area have focused on sensor applications, and the results of nanohole array based chemical and biomolecular sensors are reviewed here. Also relevant to on-chip analysis, various field and spectroscopic enhancements achieved with nanohole arrays are discussed. The general benefits and limitations of nanohole arrays for analytical applications are discussed in the context of existing tools. Beyond sensing, particle trapping and other potential optofluidic applications of nanohole arrays are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Airola M, Liu Y, Blair S (2005) Second-harmonic generation from an array of sub-wavelength metal apertures. J Opt A Pure Appl Opt 7:S118–S123

    Article  Google Scholar 

  • Alam MZ, Meier J, Aitchison JS, Mojahedi M (2007) Gain assisted surface plasmon polariton in quantum wells structures. Opt Express 15:176–182

    Article  Google Scholar 

  • Applegate RW Jr, Squier J, Vestad T, Oakey J, Marr D (2004) Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars. Opt Express 12(19):4390–4398

    Article  Google Scholar 

  • Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  Google Scholar 

  • Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66:163–182

    Article  MATH  MathSciNet  Google Scholar 

  • Bratton D, Yang D, Dai J, Ober CK (2006) Recent progress in high resolution lithography. Polym Adv Technol 17:94–103

    Article  Google Scholar 

  • Bravo-abad, Degiron A, Przybilla F, Genet C, Garcia-Vidal FJ, Martin-Monreno L Ebbesen TW (2006) How light emerges from an illuminated array of subwavelength holes. Nat Phys 2:120–123

    Article  Google Scholar 

  • Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004a) Nanohole-enhanced Raman scattering. Nano Lett 4:2015–2018

    Article  Google Scholar 

  • Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004b) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815

    Article  Google Scholar 

  • Brolo AG, Kwok SC, Moffitt MG, Gordon R, Riordon J, Kavanagh KL (2005) Enhanced fluorescence from arrays of nanoholes in a gold film. J Am Chem Soc 127:14936–14941

    Article  Google Scholar 

  • Brolo AG, Kwok SC, Cooper MD, Moffitt MG, Wang CW, Gordon R, Riordon J, Kavanagh KL (2006) Surface plasmon-quantum dot coupling from arrays of nanoholes. J Phys Chem B 110:8307–8313

    Article  Google Scholar 

  • Chang SH, Gray SK, Schatz GC (2005) Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express 13:3150–3165

    Article  Google Scholar 

  • Cooper MA (2003) Label-free screening of bio-molecular interactions. Anal Bioanal Chem 377:834–842

    Article  Google Scholar 

  • Cordovez B, Psaltis D, Erickson D (2007) Trapping and storage of particles in electroactive microwells. Appl Phys Lett 90:024102

    Article  Google Scholar 

  • Dahlin A, Zach M, Rindzevicius T, Kall M, Sutherland DS, Hook F (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc 127:5043–5048

    Article  Google Scholar 

  • De Leebeeck A, Kumar LKS, de Lange V, Sinton D, Gordon R, Brolo AG (2007) On-chip surface-based detection with nanohole arrays. Anal Chem 79:4094–4100

    Article  Google Scholar 

  • DiMaio JR, Ballato J (2006) Polarization-dependent transmission through subwavelength anisotropic aperture arrays. Opt Express 14:2380–2384

    Article  Google Scholar 

  • Dintinger J, Klein S, Ebbesen TW (2006) Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching. Adv Mater 18:1267–1270

    Article  Google Scholar 

  • Duhr S, Braun D (2006) Why molecules move along a temperature gradient. PNAS 103:19678–19682

    Article  Google Scholar 

  • Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub wavelength hole arrays. Nature 391:667–669

    Article  Google Scholar 

  • Eijkel JCT, van den Berg A (2005) Nanofluidics: what is it and what can we expect from it? Microfluidics Nanofluidics 1:249–267

    Article  Google Scholar 

  • Gao D, Chen W, Mulchandani A (2007) Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes. Appl Phys Lett 90:073901

    Article  Google Scholar 

  • Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196

    Article  Google Scholar 

  • Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  Google Scholar 

  • Gordon R, Brolo AG (2005) Increased cut-off wavelength for a subwavelength hole in a real metal. Opt Express 13:1933–1938

    Article  Google Scholar 

  • Gordon R, Brolo AG, McKinnon A, Rajora A, Leathem B, Kavanagh KL (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92:037401

    Article  Google Scholar 

  • Gordon R, Hughes M, Leathem B, Kavanagh KL, Brolo AG (2005) Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film. Nano Lett 5:1243–1246

    Article  Google Scholar 

  • Gordon R, Kumar LKS, Brolo AG (2006) Resonant light transmission through a nanohole in a metal film. IEEE Trans Nanotechnol 5:291–294

    Article  Google Scholar 

  • Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  Google Scholar 

  • Homola J, Yee SS, Gauglitz G (1999) SPR sensors: review. Sens Actuators B 54:3–15

    Article  Google Scholar 

  • Iwasaki Y, Tobita T, Kurihara K, Horiuchi T, Suzuki K, Niwa O (2006) Imaging of flow pattern in micro flow channel using surface plasmon resonance. Meas Sci Technol 17:3184–3188

    Article  Google Scholar 

  • Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of SPR. Langmuir 14:5636–5648

    Article  Google Scholar 

  • Kim IT, Kihm KD (2006) Label-free visualization of microfluidic mixture concentration fields using SPR reflectance imaging. Exp Fluids 41:905–916

    Article  Google Scholar 

  • Koerkamp KJK, Enoch S, Segerink FB, Hulst NFv, Kuipers L (2004) Strong Influence of hole shape on extraordinary transmission through periodic arrays of nanoholes. Phys Rev Lett 92:183901

    Article  Google Scholar 

  • Krishnan A, Thio T, Kima TJ, Lezec HJ, Ebbesen TW, Wolff PA, Pendry J, Martin-Moreno L, Garcia-Vidal FJ (2001) Evanescently coupled resonance in surface plasmon enhanced transmission. Opt Commun 200:1–7

    Article  Google Scholar 

  • Lesuffleur A, Kumar LKS, Gordon R (2007a) Apex-enhanced second-harmonic generation by using double-hole arrays in a gold film. Phys Rev B 75:045423

    Article  Google Scholar 

  • Lesuffleur A, Kumar LKS, Brolo AG, Kavanagh KL, Gordon R (2007b) Apex-enhanced raman spectroscopy using double-hole arrays in a gold film. J Phys Chem C 111(6):2347–2350

    Article  Google Scholar 

  • Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686

    Article  Google Scholar 

  • Liu Y, Blair S (2003) Fluorescence enhancement from an array of nanoholes. Opt Lett 28:507–509

    Article  Google Scholar 

  • Liu Y, Bishop J, Williams L, Blair S, Herron J (2004) Biosensing based upon molecular confinement in metallic nanocavity arrays. Nanotechnology 15:1368–1374

    Article  Google Scholar 

  • Metzger NK, Marchington RF, Mazilu M, Smith RL, Dholakia K, Wright EM (2007) Measurement of the restoring forces acting on two optically bound particles from normal mode correlations. Phys Rev Lett 98:068102

    Article  Google Scholar 

  • Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photonics 1:106–114

    Article  Google Scholar 

  • Mullett WM, Lai EPC, Yeung JM (2000) Surface plasmon resonance-based immunoassays. Methods 22:77–91

    Article  Google Scholar 

  • Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809

    Article  Google Scholar 

  • Nice EC, Catimel B (1999) Instrumental biosensors. Bioessays 21:339–352

    Article  Google Scholar 

  • Probstein RF (2003) Physicochemical hydrodynamics, 2nd edn. Wiley, NJ

    Google Scholar 

  • Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Article  Google Scholar 

  • Raether H (1988) Surface plasmon on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  • Righini M, Zelenina AS, Girard C, Quidant R (2007) Parallel and selective trapping in a patterned plasmonic landscape. Nat Phys. doi:10.1038/nphys624

  • Rindzevicius T, Alaverdyan Y, Dahlin A, Hook F, Sutherland DS, Kall M (2005) Plasmonic sensing characteristics of single nanometric holes. Nano Lett 5:2335–2339

    Article  Google Scholar 

  • Shankaran DR, Vengatajalabathy GK, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuators B Chem 121:158–177

    Article  Google Scholar 

  • Sinton D (2004) Microscale flow visualization. Microfluidics Nanofluidics 1:2–21

    Article  Google Scholar 

  • Smolyaninov II, Elliott J, Zayats AV, Davis CC (2005) Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons. Phys Rev Lett 94:057401

    Article  Google Scholar 

  • Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4:1085–1088

    Article  Google Scholar 

  • Stark PRH, Halleck AE, Larson DN (2005) Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology. Methods 37:37–47

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  Google Scholar 

  • Sun YG, Xia YN (2003) Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 128:686–691

    Article  Google Scholar 

  • Tetz KA, Pang L, Fainman Y (2006) High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt Lett 31:1528–1530

    Article  Google Scholar 

  • Verpoorte E (2003) Beads and chips: new recipes for analysis. Lab Chip 3:60N–68N

    Article  Google Scholar 

  • Volpe G, Quidant R, Badenes G, Petrov D (2006) Surface plasmon radiation forces. Phys Rev Lett 96:238101

    Article  Google Scholar 

  • Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855

    Article  Google Scholar 

  • Whitney AV, Myers BD, Van Duyne RP (2004) Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography. Nano Lett 4:1507–1511

    Article  Google Scholar 

  • Williams SM, Stafford AD, Rodriguez KR, Rogers TM, Coe JV (2003) Accessing SP with Ni microarrays for enhanced IR. J Phys Chem B 107:11871–11879

    Article  Google Scholar 

  • Yin LL, Vlasko-Vlasov VK, Pearson J, Hiller JM, Hua J, Welp U, Brown DE, Kimball CW (2005) Subwavelength focusing and guiding of surface plasmons. Nano Lett 5:1399–1402

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the Natural Sciences and Engineering Research Council (NSERC) of Canada, through discovery research grants. This work was also supported by equipment grants from the Canada Foundation for Innovation (CFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sinton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinton, D., Gordon, R. & Brolo, A.G. Nanohole arrays in metal films as optofluidic elements: progress and potential. Microfluid Nanofluid 4, 107–116 (2008). https://doi.org/10.1007/s10404-007-0221-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0221-0

Keywords

Navigation