Skip to main content
Log in

Magnetic bead handling on-chip: new opportunities for analytical applications

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This review describes recent advances in the handling and manipulation of magnetic particles in microfluidic systems. Starting from the properties of magnetic nanoparticles and microparticles, their use in magnetic separation, immuno-assays, magnetic resonance imaging, drug delivery, and hyperthermia is discussed. We then focus on new developments in magnetic manipulation, separation, transport, and detection of magnetic microparticles and nanoparticles in microfluidic systems, pointing out the advantages and prospects of these concepts for future analysis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8a–e
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. It is known that some micro-organisms and animals use geomagnetic field information for orientation. They contain biomineralized magnetite [Fe3O4] particles that can interact with the geomagnetic field, monitor its direction, and are part of a highly sophisticated sensory system.

  2. Here, we use the definition of force where the moment has units of T m3, as introduced in the book of Chikazumi (1964). An alternative dimension in literature for the moment is A m2, but, in this case, the factor μ0 in the denominator of Eq. 1 needs to be replaced by 1.

  3. The advantages related to the use of magnetic beads in microfluidic systems apply equally well to the more “macroscopic” microtiter plate and test tube formats.

  4. A thick region is characterized by a channel depth that is of the order of the radius of gyration of the DNA molecule. A thin region has a much smaller depth, which effectively blocks the DNA in the thick region unless it is deformed at the cost of an entropy change.

References

  • Ahn CH, Allen MG, Trimmer W, Jun YN, Erramilli S (1996) A fully integrated micromachined magnetic particle separator. J Microelectromech Syst 5(3):151–158

    Article  CAS  Google Scholar 

  • Alexiou C (2001) Target tumor therapy with “magnetic drug targeting”: therapeutic efficacy and biokinetic study of ferrofluid bound mitoxantrone. Clin Cancer Res 7(11):257

    Google Scholar 

  • Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. II: analytical standard operations and applications. Anal Chem 74(12):2637–2652

    Article  CAS  PubMed  Google Scholar 

  • Baibich MN, Broto JM, Fert A, Vandau FN, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys Rev Lett 61(21):2472–2475

    Article  CAS  PubMed  Google Scholar 

  • Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ (1998) A biosensor based on magnetoresistance technology. Biosens Bioelectron 13(7–8):731–739

    Article  CAS  PubMed  Google Scholar 

  • Bauer LA, Birenbaum NS, Meyer GJ (2004) Biological applications of high aspect ratio nanoparticles. J Mater Chem 14(4):517–526

    Article  CAS  Google Scholar 

  • Bergemann C, Muller-Schulte D, Oster J, Brassard L, Lubbe AS (1999) Magnetic ion-exchange nano- and microparticles for medical, biochemical and molecular biological applications. J Magnetism Magn Mater 194(1–3):45–52

    Article  CAS  Google Scholar 

  • Besse PA, Boero G, Demierre M, Pott V, Popovic R (2002) Detection of a single magnetic microbead using a miniaturized silicon Hall sensor. Appl Phys Lett 80(22):4199–4201

    Article  CAS  Google Scholar 

  • Blankenstein G, Larsen UD (1998) Modular concept of a laboratory on a chip for chemical and biochemical analysis. Biosens Bioelectron 13(3–4):427–438

    Article  CAS  Google Scholar 

  • Cavalier R, Ciocatto EC, Giovanel Bc, Heidelbe C, Johnson RO, Margotti M, Mondovi B, Moricca G, Rossifan A (1967) Selective heat sensitivity of cancer cells—biochemical and clinical studies. Cancer 20(9):1351

    PubMed  Google Scholar 

  • Chiem N, Harrison DJ (1997) Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline. Anal Chem 69(3):373–378

    Article  CAS  PubMed  Google Scholar 

  • Chikazumi S (1964) Physics of magnetism. R.E. Krieger Publishing Co., Malabar, Florida

    Google Scholar 

  • Choi JW, Ahn CH, Bhansali S, Henderson HT (2000). A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems. Sens Actuat B Chem 68(1–3):34–39

    Article  Google Scholar 

  • Choi JW, Liakopoulos TM, Ahn CH (2001) An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy. Biosens Bioelectron 16(6):409–416

    Article  CAS  PubMed  Google Scholar 

  • Choi JW, Oh KW, Thomas JH, Heineman WR, Halsall HB, Nevin JH, Helmicki AJ, Henderson HT, Ahn CH (2002) An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2(1):27–30

    Article  CAS  PubMed  Google Scholar 

  • Coehoorn R, Prins MWJ (2003) Patent application WO 03/054523 A2

  • Deng T, Whitesides GM, Radhakrishnan M, Zabow G, Prentiss M (2001) Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography. Appl Phy Lett 78(12):1775–1777

    Article  CAS  Google Scholar 

  • Deng T, Prentiss M, Whitesides GM (2002) Fabrication of magnetic microfiltration systems using soft lithography. Appl Phys Lett 80(3):461–463

    Article  CAS  Google Scholar 

  • Dieny B, Speriosu VS, Metin S, Parkin SSP, Gurney BA, Baumgart P, Wilhoit DR (1991) Magnetotransport properties of magnetically soft spin-valve structures. J Appl Phys 69(8):4774–4779

    Article  CAS  Google Scholar 

  • Dorfman KD, Viovy JL (2004) Semiphenomenological model for the dispersion of DNA during electrophoresis in a microfluidic array of posts. Phys Rev E 69(1):011901

    Article  Google Scholar 

  • Doyle PS, Bibette J, Bancaud A, Viovy JL (2002) Self-assembled magnetic matrices for DNA separation chips. Science 295(5563):2237

    Article  Google Scholar 

  • Dunnill P, Lilly MD (1974) Purification of enzymes using magnetic bio-affinity materials. Biotechnol Bioeng 16(7):987–990

    CAS  PubMed  Google Scholar 

  • Dynal Biotech product catalogue (2004) Dynal Biotech, Oslo, Norway, home page at http://www.dynal.no

  • Ebner AD, Ritter JA (2001) New correlation for the capture cross section in high-gradient magnetic separation. AiChE J 47(2):303–313

    Article  CAS  Google Scholar 

  • Edelstein RL, Tamanaha CR, Sheehan PE, Miller MM, Baselt DR, Whitman LJ, Colton RJ (2000) The BARC biosensor applied to the detection of biological warfare agents. Biosens Bioelectron 14(10–11):805–813

    Article  CAS  PubMed  Google Scholar 

  • Ejsing L, Hansen MF, Menon AK, Ferreira HA, Graham DL, Freitas PP (2004) Planar Hall effect sensor for magnetic micro- and nanobead detection. Appl Phys Lett 84(23):4729–4731

    Article  CAS  Google Scholar 

  • Fan ZH, Mangru S, Granzow R, Heaney P, Ho W, Dong QP, Kumar R (1999) Dynamic DNA hybridization on a chip using paramagnetic beads. Anal Chem 71(21):4851–4859

    Article  CAS  PubMed  Google Scholar 

  • Flores GA, Liu J, Mohebi M, Jamasbi N (1999) Field-induced columnar and bent-wall-like patterns in a ferrofluid emulsion. Int J Mod Phys B 13(14–16):2093–2100

    Article  CAS  Google Scholar 

  • Forbes ZG, Yellen BB, Barbee KA, Friedman G (2003) An approach to targeted drug delivery based on uniform magnetic fields. IEEE Trans Magn 39(5):3372–3377

    Article  CAS  Google Scholar 

  • Freitas PP, Silva F, Oliveira NJ, Melo LV, Costa L, Almeida N (2000) Spin valve sensors. Sens Actuat A Phys 81(1–3):2–8

    Article  Google Scholar 

  • Gordon RT, Hines JR, Gordon D (1979) Intracellular hyperthermia: a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses 5(1):83–102

    Article  CAS  PubMed  Google Scholar 

  • Graham DL, Ferreira HA, Freitas PP, Cabral JMS (2003) High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors. Biosens Bioelectron 18(4):483–488

    Article  CAS  PubMed  Google Scholar 

  • Grieve K, Mulvaney P, Grieser F (2000) Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Curr Opin Colloid Interface Science 5(1–2):168–172

    Article  CAS  Google Scholar 

  • Gruttner C, Teller J (1999) New types of silica-fortified magnetic nanoparticles as tools for molecular biology applications. J Magnetism Magn Mater 194(1–3):8–15

    Article  CAS  Google Scholar 

  • Gruttner C, Rudershausen S, Teller J (2001) Improved properties of magnetic particles by combination of different polymer materials as particle matrix. J Magnetism Magn Mater 225(1–2):1–7

    Article  CAS  Google Scholar 

  • Hadd AG, Raymond DE, Halliwell JW, Jacobson SC, Ramsey JM (1997) Microchip device for performing enzyme assays. Anal Chem 69(17):3407–3412

    Article  CAS  Google Scholar 

  • Hafeli UO, Pauer GJ (1999) In vitro and in vivo toxicity of magnetic microspheres. J Magnetism Magn Mater 194(1–3):76–82

    Article  CAS  Google Scholar 

  • Hafeli UO, Sweeney SM, Beresford BA, Sim EH, Macklis RM (1994) Magnetically directed poly(lactic acid) Y-90 microspheres—novel agents for targeted intracavitary radiotherapy. J Biomed Mater Res 28(8):901–908

    CAS  PubMed  Google Scholar 

  • Haik Y, Pai V, Chen CJ (1999) Development of magnetic device for cell separation. J Magnetism Magn Mater 194(1–3):254–261

    Article  CAS  Google Scholar 

  • Han J, Craighead HG (2000) Separation of long DNA molecules in a microfabricated entropic trap array. Science 288(5468):1026–1029

    Article  CAS  PubMed  Google Scholar 

  • Han J, Turner SW, Craighead HG (1999) Entropic trapping and escape of long DNA molecules at submicron size constriction. Phys Rev Lett 83(8):1688–1691

    Article  CAS  Google Scholar 

  • Hancock JP, Kemshead JT (1993) A rapid and highly selective approach to cell separations using an immunomagnetic colloid. J Immunol Meth 164(1):51–60

    Article  CAS  PubMed  Google Scholar 

  • Hartmann U (1999) Magnetic multilayers and giant magnetoresistance. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hatch GP, Stelter RE (2001) Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems. J Magnetism Magn Mater 225(1–2):262–276

    Article  CAS  Google Scholar 

  • Hayes MA, Polson NA, Garcia AA (2001a) Active control of dynamic supraparticle structures in microchannels. Langmuir 17(9):2866–2871

    CAS  Google Scholar 

  • Hayes MA, Polson NA, Phayre AN, Garcia AA (2001b) Flow-based microimmunoassay. Anal Chem 73(24):5896–5902

    Article  CAS  PubMed  Google Scholar 

  • Hergt R, Andra W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34(5):3745–3754

    Article  CAS  Google Scholar 

  • Hoffmann C, Franzreb M (2004) A novel repulsive-mode high-gradient magnetic separator. II: separation model. IEEE Trans Magn 40(2):462–468

    Article  Google Scholar 

  • Ikeda N, Hayashida O, Kameda H, Ito H, Matsuda T (1994) Experimental study on thermal damage to dog normal brain. Int J Hyperthermia 10(4):553–561

    CAS  PubMed  Google Scholar 

  • Jiang GF, Harrison DJ (2000) mRNA isolation in a microfluidic device for eventual integration of cDNA library construction. Analyst 125(12):2176–2179

    Article  CAS  PubMed  Google Scholar 

  • Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magnetism Magn Mater 225(1–2):118–126

    Article  CAS  Google Scholar 

  • Joung J, Shen J, Grodzinski P (2000) Micropumps based on alternating high-gradient magnetic fields. IEEE Trans Magn 36(4):2012–2014

    Article  Google Scholar 

  • Kawaguchi H (2000) Functional polymer microspheres. Prog Polym Sci 25(8):1171–1210

    Article  CAS  Google Scholar 

  • Kelley JR (1977) US patent 4019994

  • Kim YS, Morris MD (1994) Separation of nucleic acids by capillary electrophoresis in cellulose solutions with mono- and bis-intercalating dyes. Anal Chem 66(7):1168–1174

    CAS  PubMed  Google Scholar 

  • Kim DK, Zhang Y, Kehr J, Klason T, Bjelke B, Muhammed M (2001a) Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magnetism Magn Mater 225(1–2):256–261

    Article  CAS  Google Scholar 

  • Kim DK, Zhang Y, Voit W, Kao KV, Kehr J, Bjelke B, Muhammed M (2001b) Superparamagnetic iron oxide nanoparticles for bio-medical applications. Scripta Materialia 44(8–9):1713–1717

    Article  CAS  Google Scholar 

  • Kim DK, Mikhaylova M, Wang FH, Kehr J, Bjelke B, Zhang Y, Tsakalakos T, Muhammed M (2003) Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem Mater 15(23):4343–4351

    Article  CAS  Google Scholar 

  • Kleiber J, Walter T, Harttig H, Lesniak C, Mennig M, Riedling M, Schmidt H (2001) US patent 6255477B1

  • Kondo A, Kamura H, Higashitani K (1994) Development and application of thermosensitive magnetic immunomicrospheres for antibody purification. Appl Microbiol Biotechnol 41(1):99–105

    Article  CAS  PubMed  Google Scholar 

  • Koneracka M, Kopcansky P, Timko M, Ramchand CN (2002) Direct binding procedure of proteins and enzymes to fine magnetic particles. J Magnetism Magn Mater 252(1–3):409–411

    Article  CAS  Google Scholar 

  • Kourilov V, Steinitz M (2002) Magnetic-bead enzyme-linked immunosorbent assay verifies adsorption of ligand and epitope accessibility. Anal Biochem 311(2):166–170

    Article  CAS  PubMed  Google Scholar 

  • Koutny LB, Schmalzing D, Taylor TA, Fuchs M (1996) Microchip electrophoretic immunoassay for serum cortisol. Anal Chem 68(1):18–22

    Article  CAS  PubMed  Google Scholar 

  • Kruis FE, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J Aerosol Sci 29(5–6):511–535

    Article  CAS  Google Scholar 

  • Lagae L, Wirix-Speetjens R, Das J, Graham D, Ferreira H, Freitas PPF, Borghs G, De Boeck J (2002) On-chip manipulation and magnetization assessment of magnetic bead ensembles by integrated spin-valve sensors. J Appl Phys 91(10):7445–7447

    Article  CAS  Google Scholar 

  • Landfester K, Ramirez LP (2003) Encapsulated magnetite particles for biomedical application. J Phys Condensed Matter 15(15):S1345–S1361

    Article  CAS  Google Scholar 

  • Lawaczeck R, Bauer H, Frenzel T, Hasegawa M, Ito Y, Kito K, Miwa N, Tsutsui H, Volger H, Weinmann HJ (1997) Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting—pre-clinical profile of SH U555A. Acta Radiologica 38(4):584–597

    CAS  PubMed  Google Scholar 

  • Lee JW, Isobe T, Senna M (1996) Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloids Surf A Physicochem Eng Aspects 109:121–127

    Article  CAS  Google Scholar 

  • Lee GU, Metzger S, Natesan M, Yanavich C, Dufrene YF (2000) Implementation of force differentiation in the immunoassay. Anal Biochem 287(2):261–271

    Article  CAS  PubMed  Google Scholar 

  • Lee CS, Lee H, Westervelt RM (2001) Microelectromagnets for the control of magnetic nanoparticles. Appl Phys Lett 79(20):3308–3310

    Article  CAS  Google Scholar 

  • Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783

    Article  CAS  Google Scholar 

  • Li GX, Wang SX (2003) Analytical and micromagnetic modeling for detection of a single magnetic microbead or nanobead by spin valve sensors. IEEE Trans Magn 39(5):3313–3315

    Article  Google Scholar 

  • Li GX, Joshi V, White RL, Wang SX, Kemp JT, Webb C, Davis RW, Sun SH (2003) Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications. J Appl Phys 93(10):7557–7559

    Article  CAS  Google Scholar 

  • Lin JC, Wang YJ (1987) Interstitial microwave antennas for thermal therapy. Int J Hyperthermia 3(1):37–47

    CAS  PubMed  Google Scholar 

  • Liu J, Lawrence M, Wu A, Ivey ML, Flores GA, Javier K, Bibette J, Richard J (1995) Field-induced structures in ferrofluid emulsions. Phys Rev Lett 74(14):2828–2831

    Article  CAS  PubMed  Google Scholar 

  • Liu RH, Yang JN, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76(7):1824–1831

    Article  CAS  PubMed  Google Scholar 

  • Lubbe AS, Alexiou C, Bergemann C (2001). Clinical applications of magnetic drug targeting. J Surg Res 95(2):200–206

    Article  CAS  PubMed  Google Scholar 

  • Madou MJ (2002). Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuat B Chem 1(1–6):244–248

    Article  Google Scholar 

  • McCloskey KE, Chalmers JJ, Zborowski M (2003a) Magnetic cell separation: characterization of magnetophoretic mobility. Anal Chem 75(24):6868–6874

    Article  CAS  PubMed  Google Scholar 

  • McCloskey KE, Moore LR, Hoyos M, Rodriguez A, Chalmers JJ, Zborowski M (2003b) Magnetophoretic cell sorting is a function of antibody binding capacity. Biotechnol Progr 19(3):899–907

    Article  CAS  Google Scholar 

  • Melle S, Fuller GG, Rubio MA (2000) Structure and dynamics of magnetorheological fluids in rotating magnetic fields. Phys Rev E 61(4):4111–4117

    Article  CAS  Google Scholar 

  • Melle S, Calderon OG, Rubio MA, Fuller GG (2002) Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results. J Non-Newton Fluid Mech 102(2):135–148

    Article  CAS  Google Scholar 

  • Miller MM, Sheehan PE, Edelstein RL, Tamanaha CR, Zhong L, Bounnak S, Whitman LJ, Colton RJ (2001) A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection. J Magnetism Magn Mater 225(1–2):138–144

    Article  CAS  Google Scholar 

  • Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11(2):231–238

    CAS  PubMed  Google Scholar 

  • Minc N, Futterer C, Dorfman KD, Bancaud A, Gosse C, Goubault C, Viovy JL (2004) Quantitative microfluidic separation of DNA in self-assembled magnetic matrixes. Anal Chem 76(13):3770–3776

    Article  CAS  PubMed  Google Scholar 

  • Mitnik L, Heller C, Prost J, Viovy JL (1995) Segregation in DNA solutions induced by electric fields. Science 267(5195):219–222

    CAS  PubMed  Google Scholar 

  • Molday RS (1984) US patent 4452773

  • Moller W, Nemoto I, Heyder J (2003) Effect of magnetic bead agglomeration on cytomagnetometric measurements. IEEE Trans Nanobiosci 2(4):247–254

    Article  Google Scholar 

  • Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18(4):267–284

    Article  CAS  PubMed  Google Scholar 

  • Mosbach K, Andersson L (1977) Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature 270(5634):259–261

    CAS  PubMed  Google Scholar 

  • Murray CB, Kagan CR and Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  • Nedelcu S, Watson JHP (2002) Magnetic separator with transversally magnetised disk permanent magnets. Miner Eng 15(5):355–359

    Article  CAS  Google Scholar 

  • Ogiue-Ikeda M, Sato Y, Ueno S (2003) A new method to destruct targeted cells using magnetizable beads and pulsed magnetic force. IEEE Transact Nanobiosci 2(4):262–265

    Article  Google Scholar 

  • Ostergaard S, Blankenstein G, Dirac H, Leistiko O (1999) A novel approach to the automation of clinical chemistry by controlled manipulation of magnetic particles. J Magnetism Magn Mater 194(1–3):156–162

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D–Appl Phys 36(13):R167–R181

    Article  CAS  Google Scholar 

  • Papell SS (1965) US patent 3215572

  • Promislow JHE, Gast AP (1996) Magnetorheological fluid structure in a pulsed magnetic field. Langmuir 12(17):4095–4102

    Article  CAS  Google Scholar 

  • Promislow JHE, Gast AP (1997) Low-energy suspension structure of a magnetorheological fluid. Phys Rev E 56(1):642–651

    Article  CAS  Google Scholar 

  • Rashkovetsky LG, Lyubarskaya YV, Foret F, Hughes DE, Karger BL (1997) Automated microanalysis using magnetic beads with commercial capillary electrophoretic instrumentation. J Chromatogr A 781(1–2):197–204

    Article  CAS  PubMed  Google Scholar 

  • Reimers GW, Khalfalla SE (1974) US patent 3843540

  • Rembaum A (1981) US patent 4267234

  • Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. I: introduction, theory, and technology. Anal Chem 74(12):2623–2636

    Article  CAS  PubMed  Google Scholar 

  • Rheinlander T, Kotitz R, Weitschies W, Semmler W (2000) Magnetic fractionation of magnetic fluids. J Magnetism Magn Mater 219(2):219–228

    Article  CAS  Google Scholar 

  • Rida A, Gijs MAM (2004a) Dynamics of magnetically retained supraparticle structures in a liquid flow. Appl Phys Lett, to be published

  • Rida A, Gijs MAM (2004b) Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Anal Chem DOI: 10.1021/ac049415j

    Google Scholar 

  • Rida A, Fernandez V, Gijs MAM (2003a) Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic field. Appl Phys Lett 83(12):2396–2398

    Article  CAS  Google Scholar 

  • Rida A, Lehnert T, Gijs MAM (2003b) Microfluidic mixer using magnetic beads. In: Proceedings of the 7th international conference on miniaturized chemical and biochemical analysis systems (μTAS 2003), Squaw Valley, California, 5–9 October 2003, pp 579–582

  • Rife JC, Miller MM, Sheehan PE, Tamanaha CR, Tondra M, Whitman LJ (2003) Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sensor Actuat A–Phys 107(3):209–218

    Article  Google Scholar 

  • Roger J, Pons JN, Massart R, Halbreich A, Bacri JC (1999) Some biomedical applications of ferrofluids. Eur Phys J Appl Phys 5(3):321–325

    Article  CAS  Google Scholar 

  • Romano G, Sacconi L, Capitanio M, Pavone FS (2003) Force and torque measurements using magnetic micro beads for single molecule biophysics. Optics Commun 215(4–6):323–331

    Google Scholar 

  • Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magnetism Magn Mater 252(1–3):370–374

    Article  CAS  Google Scholar 

  • Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103(3):415–422

    CAS  PubMed  Google Scholar 

  • Safarik I, Safarikova M (2002) Magnetic nanoparticles and biosciences. Monatsh Chem 133(6):737–759

    CAS  Google Scholar 

  • Sandre O, Browaeys J, Perzynski R, Bacri JC, Cabuil V, Rosensweig RE (1999) Assembly of microscopic highly magnetic droplets: magnetic alignment versus viscous drag. Phys Rev E 59(2):1736–1746

    Article  CAS  Google Scholar 

  • Sato K, Tokeshi M, Odake T, Kimura H, Ooi T, Nakao M, Kitamori T (2000) Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip. Anal Chem 72(6):1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Semelka RC, Helmberger TKG (2001) Contrast agents for MR imaging of the liver. Radiology 218(1):27–38

    CAS  PubMed  Google Scholar 

  • Shikida M, Inouchi K, Honda H, Sato K (2004) Magnetic handling of droplet in micro chemical analysis system utilizing surface tension and wettability. In: Proceedings of the 17th IEEE international conference on micro electro mechanical systems (MEMS 2004), Maastricht, The Netherlands, January 2004, pp 359–362

  • Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94(6):606–613

    CAS  Google Scholar 

  • Singer JM (1987) In: El-Asser MS, Fitch RM (eds) Future directions in polymer colloids. NATO ASI series, series E: applied sciences, no. 138. Published in cooperation with NATO Scientific Affairs Division by Nijhoff, Dordrecht, The Netherlands

  • Stauffer PR, Cetas TC, Fletcher AM, Deyoung DW, Dewhirst MW, Oleson JR, Roemer RB (1984) Observations on the use of ferromagnetic implants for inducing hyperthermia. IEEE Trans Biomed Eng 31(1):76–90

    CAS  PubMed  Google Scholar 

  • Suzuki M, Shinkai M, Kamihira M, Kobayashi T (1995) Preparation and characteristics of magnetite-labeled antibody with the use of Poly(Ethylene Glycol) derivatives. Biotechnol Appl Biochem 21:335–345

    CAS  PubMed  Google Scholar 

  • Swihart MT (2003) Vapor phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8(1):127–133

    Article  CAS  Google Scholar 

  • Tiwari A, Punshon G, Kidane A, Hamilton G, Seifalian AM (2003) Magnetic beads (DynabeadTM) toxicity to endothelial cells at high bead concentration: implication for tissue engineering of vascular prosthesis. Cell Biol Toxicol 19(5):265–272

    Article  CAS  PubMed  Google Scholar 

  • Todd P, Cooper RP, Doyle JF, Dunn S, Vellinger J, Deuser MS (2001) Multistage magnetic particle separator. J Magnetism Magn Mater 225(1–2):294–300

    Article  CAS  Google Scholar 

  • Tondra M, Granger M, Fuerst R, Porter M, Nordman C, Taylor J, Akou S (2001) Design of integrated microfluidic device for sorting magnetic beads in biological assays. IEEE Trans Magn 37(4):2621–2623

    Article  CAS  Google Scholar 

  • Tondra M, Porter M, Lipert RJ (2000) A model for detection of immobilized superparamagnetic nanosphere assay labels using giant magnetoresistive sensors. J Vac Sci Technol A-Vac Surfaces Films 18(4):1125–1129

    Article  CAS  Google Scholar 

  • Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13(11):3843–3858

    Article  CAS  Google Scholar 

  • Undisclosed_inventors (2001) European patent 1154443A1

  • Valberg PA, Butler JP (1987) Magnetic particle motions within living cells—physical theory and techniques. Biophys J 52(4):537–550

    CAS  PubMed  Google Scholar 

  • Verpoorte E (2003) Beads and chips: new recipes for analysis. Lab Chip 3(4):60N–68 N

    CAS  Google Scholar 

  • Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems: recent developments. Anal Chem 76(12):3373–3385

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhu Y, Boyd C, Luo WL, Cebers A, Rosensweig RE (1994) Periodic branched structures in a phase-separated magnetic colloid. Phys Rev Lett 72(12):1929–1932

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127

    CAS  PubMed  Google Scholar 

  • White FM (1999) Fluid mechanics, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Wilhelm C, Gazeau F, Roger J, Pons JN, Bacri JC (2002) Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18(21):8148–8155

    Article  CAS  Google Scholar 

  • Williams PS, Zborowski M, Chalmers JJ (1999) Flow rate optimization for the quadrupole magnetic cell sorter. Anal Chem 71(17):3799–3807

    Article  CAS  PubMed  Google Scholar 

  • Wirtz D, Fermigier M (1994) One-dimensional patterns and wavelength selection in magnetic fluids. Phys Rev Lett 72(14):2294–2297

    Article  CAS  PubMed  Google Scholar 

  • Wirtz D, Fermigier M (1995) Periodic structures and substructures in magnetic suspensions. Langmuir 11(2):398–400

    CAS  Google Scholar 

  • Yellen B, Friedman G, Feinerman A (2002) Analysis of interactions for magnetic particles assembling on magnetic templates. J Appl Phys 91(10):8552–8554

    Article  CAS  Google Scholar 

  • Yellen B, Friedman G, Feinerman A (2003) Printing superparamagnetic colloidal particle arrays on patterned magnetic film. J Appl Phys 93(10):7331–7333

    Article  CAS  Google Scholar 

  • Yellen BB, Friedman G (2004) Programmable assembly of colloidal particles using magnetic microwell templates. Langmuir 20(7):2553–2559

    Article  CAS  Google Scholar 

  • Zborowski M, Sun LP, Moore LR, Williams PS, Chalmers JJ (1999) Continuous cell separation using novel magnetic quadrupole flow sorter. J Magnetism Magn Mater 194(1–3):224–230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges Amar Rida, Victor Fernandez, Hicham Majd, Smail Hadjidj, Ulrike Lehmann, Virendra Parashar, and Caroline Vandevyver for useful discussions and their collaboration in the EPFL magnetic bead handling project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. M. Gijs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gijs, M.A.M. Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1, 22–40 (2004). https://doi.org/10.1007/s10404-004-0010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-004-0010-y

Keywords

Navigation