Skip to main content
Log in

Evaluation of corneal epithelial and stromal thickness in keratoconus using spectral-domain optical coherence tomography

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol. 1984;28:293–322.

    Article  PubMed  CAS  Google Scholar 

  2. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297–319.

    Article  PubMed  CAS  Google Scholar 

  3. Erie JC, Patel SV, McLaren JW, Nau CB, Hodge DO, Bourne WM. Keratocyte density in keratoconus: a confocal microscopy study(a). Am J Ophthalmol. 2002;134:689–95.

    Article  PubMed  Google Scholar 

  4. Ku JY, Niederer RL, Patel DV, Sherwin T, McGhee CN. Laser scanning in vivo confocal analysis of keratocyte density in keratoconus. Ophthalmology. 2008;115:845–50.

    Article  PubMed  Google Scholar 

  5. Niederer RL, Perumal D, Sherwin T, McGhee CN. Laser scanning in vivo confocal microscopy reveals reduced innervation and reduction in cell density in all layers of the keratoconic cornea. Invest Ophthalmol Vis Sci. 2008;49:2964–70.

    Article  PubMed  Google Scholar 

  6. Reinstein DZ, Silverman RH, Rondeau MJ, Coleman DJ. Epithelial and corneal thickness measurements by high-frequency ultrasound digital signal processing. Ophthalmology. 1994;101:140–6.

    Article  PubMed  CAS  Google Scholar 

  7. Reinstein DZ, Archer TJ, Gobbe M. Corneal epithelial thickness profile in the diagnosis of keratoconus. J Refract Surg. 2009;25:604–10.

    PubMed  Google Scholar 

  8. Reinstein DZ, Gobbe M, Archer TJ, Silverman RH, Coleman DJ. Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with artemis very-high frequency digital ultrasound. J Refract Surg. 2010;26:259–71.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  PubMed  CAS  Google Scholar 

  10. Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112:1584–9.

    Article  PubMed  CAS  Google Scholar 

  11. Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography: a review. Clin Experiment Ophthalmol. 2009;37:81–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maeda N. Optical coherence tomography for corneal diseases. Eye Contact Lens. 2010;36:254–9.

    Article  PubMed  Google Scholar 

  13. Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology. 2012;119:2425–33.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rocha KM, Perez-Straziota CE, Stulting RD, Randleman JB. SD-OCT analysis of regional epithelial thickness profiles in keratoconus, postoperative corneal ectasia, and normal eyes. J Refract Surg. 2013;29:173–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sandali O, El Sanharawi M, Temstet C, Hamiche T, Galan A, Ghouali W, et al. Fourier-domain optical coherence tomography imaging in keratoconus: a corneal structural classification. Ophthalmology. 2013;120:2403–12.

    Article  PubMed  Google Scholar 

  16. Maeda N, Klyce SD, Smolek MK, Thompson HW. Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci. 1994;35:2749–57.

    PubMed  CAS  Google Scholar 

  17. Maeda N, Fujikado T, Kuroda T, Mihashi T, Hirohara Y, Nishida K, et al. Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus. Ophthalmology. 2002;109:1996–2003.

    Article  PubMed  Google Scholar 

  18. Araki-Sasaki K, Hirano K, Osakabe Y, Kuroda M, Kitagawa K, Mishima H, et al. Classification of secondary corneal amyloidosis and involvement of lactoferrin. Ophthalmology. 2013;120:1166–72.

    Article  PubMed  Google Scholar 

  19. Mohamed S, Lee GK, Rao SK, Wong AL, Cheng AC, Li EY, et al. Repeatability and reproducibility of pachymetric mapping with Visante anterior segment-optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48:5499–504.

    Article  PubMed  Google Scholar 

  20. Wang J, Fonn D, Simpson TL, Jones L. Relation between optical coherence tomography and optical pachymetry measurements of corneal swelling induced by hypoxia. Am J Ophthalmol. 2002;134:93–8.

    Article  PubMed  Google Scholar 

  21. King-Smith PE, Fink BA, Fogt N, Nichols KK, Hill RM, Wilson GS. The thickness of the human precorneal tear film: evidence from reflection spectra. Invest Ophthalmol Vis Sci. 2000;41:3348–59.

    PubMed  CAS  Google Scholar 

  22. Wang J, Fonn D, Simpson TL, Jones L. Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography. Invest Ophthalmol Vis Sci. 2003;44:2524–8.

    Article  PubMed  Google Scholar 

  23. Wang J, Aquavella J, Palakuru J, Chung S, Feng C. Relationships between central tear film thickness and tear menisci of the upper and lower eyelids. Invest Ophthalmol Vis Sci. 2006;47:4349–55.

    Article  PubMed  Google Scholar 

  24. Scroggs MW, Proia AD. Histopathological variation in keratoconus. Cornea. 1992;11:553–9.

    Article  PubMed  CAS  Google Scholar 

  25. Eagle RCJr, Dillon EC, Laibson PR. Compensatory epithelial hyperplasia in human corneal disease. Trans Am Ophthalmol Soc. 1992;90:265–73.

    PubMed  PubMed Central  Google Scholar 

  26. Patel S, Marshall J, Fitzke FWIII. Refractive index of the human corneal epithelium and stroma. J Refract Surg. 1995;11:100–5.

    PubMed  CAS  Google Scholar 

  27. Simon G, Ren Q, Kervick GN, Parel JM. Optics of the corneal epithelium. Refract Corneal Surg. 1993;9:42–50.

    PubMed  CAS  Google Scholar 

  28. Wang J, Thomas J, Cox I, Rollins A. Noncontact measurements of central corneal epithelial and flap thickness after laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2004;45:1812–6.

    Article  PubMed  Google Scholar 

  29. Sin S, Simpson TL. The repeatability of corneal and corneal epithelial thickness measurements using optical coherence tomography. Optom Vis Sci. 2006;83:360–5.

    Article  PubMed  Google Scholar 

  30. Tao A, Wang J, Chen Q, Shen M, Lu F, Dubovy SR, et al. Topographic thickness of Bowman’s layer determined by ultra-high resolution spectral domain-optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:3901–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Francoz M, Karamoko I, Baudouin C, Labbe A. Ocular surface epithelial thickness evaluation with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:9116–23.

    Article  PubMed  Google Scholar 

  32. Haque S, Jones L, Simpson T. Thickness mapping of the cornea and epithelium using optical coherence tomography. Optom Vis Sci. 2008;85:E963–76.

    Article  PubMed  Google Scholar 

  33. Zhou W, Stojanovic A. Comparison of corneal epithelial and stromal thickness distributions between eyes with keratoconus and healthy eyes with corneal astigmatism ≥ 2.0 D. PLoS ONE. 2014;9:e85994.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Feng MT, Belin MW, Ambrósio R Jr, Grewal SP, Yan W, Shaheen MS, et al. International values of corneal elevation in normal subjects by rotating Scheimpflug camera. J Cataract Refract Surg. 2011;37:1817–21.

    Article  PubMed  Google Scholar 

  35. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2008;24:571–81.

    PubMed  PubMed Central  Google Scholar 

  36. Fuchihata M, Maeda N, Toda R, Koh S, Fujikado T, Nishida K. Characteristics of corneal topographic and pachymetric patterns in patients with pellucid marginal corneal degeneration. Jpn J Ophthalmol. 2014;58:131–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Publication of this article was supported in part by Grant-in-Aid no. 24592669 for Scientific Research (to N.M.) from the Japanese Ministry of the Education, Culture, Sports, Science, and Technology. The authors would like to thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Maeda.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, N., Nakagawa, T., Higashiura, R. et al. Evaluation of corneal epithelial and stromal thickness in keratoconus using spectral-domain optical coherence tomography. Jpn J Ophthalmol 58, 389–395 (2014). https://doi.org/10.1007/s10384-014-0338-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-014-0338-0

Keywords

Navigation