Skip to main content

Advertisement

Log in

Endocytosis in gene therapy with non-viral vectors

Endozytose in der Gentherapie mit nichtviralen Vektoren

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Gene therapy or the delivery of genetic material can be carried out not only with viral vectors, but with non-viral vectors too. Although the use of non-viral carriers is safer, this approach has generally been poorer in terms of transfection efficiency. In order to improve the transfection rates, it is important to exactly know the path that the nanoparticles go through. In this way, we can understand the reason why some of these vectors fail or are successful in their duties. This review aims to summarize the different stages and barriers that nanocarriers have to overcome during endocytosis so as to reach the cytoplasm, in the case of RNA, or the nucleus, in the case of DNA. In addition, different strategies that could be employed to improve the success of the carriers in each stage are suggested.

Zusammenfassung

Gentherapie oder die Einschleusung von genetischem Material kann nicht nur mit viralen Vektoren durchgeführt werden, sondern auch mit nichtviralen Vektoren. Obwohl die Verwendung von nichtviralen Trägern sicherer ist, hat sich diese Alternative im Allgemeinen als ungünstiger in Bezug auf die Transfektionseffizienz erwiesen. Um die Transfektionsraten zu verbessern, ist es wichtig, den Weg, den die Nanopartikel durchlaufen, ganz genau zu kennen. Auf diese Weise können wir verstehen, warum einige dieser Vektoren scheitern oder bei ihren Aufgaben erfolgreich sind. Diese Übersichtsarbeit zielt darauf ab, die verschiedenen Stufen und Barrieren zusammenfassen, welche die Nanopartikel während der Endozytose durchlaufen oder überwinden müssen, um – im Fall von RNA – das Zytoplasma zu erreichen oder – im Fall von DNA – den Zellkern. Zusätzlich werden verschiedene Strategien zur Verbesserung der Wirkung von Vektoren in den jeweiligen Stadien vorgeschlagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Griesenbach U, Alton EWFW. Moving forward: cystic fibrosis gene therapy. Hum Mol Genet. 2013;22:R52–8.

    Article  CAS  PubMed  Google Scholar 

  2. Solinis MA, Del Pozo-Rodriguez A, Apaolaza PS, Rodriguez-Gascon A. Treatment of ocular disorders by gene therapy. Eur J Pharm Biopharm. 2015;95:331–342.

    Article  CAS  PubMed  Google Scholar 

  3. Walther W, Schlag PM. Current status of gene therapy for cancer. Curr Opin Oncol. 2013;25:659–664.

    Article  CAS  PubMed  Google Scholar 

  4. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15:541–555.

    Article  CAS  PubMed  Google Scholar 

  5. Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, et al. Efficacy of gene therapy for X‑linked severe combined immunodeficiency. N Engl J Med. 2010;363:355–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J, et al. Gene therapy of X‑linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet. 2004;364:2181–2187.

    Article  CAS  PubMed  Google Scholar 

  7. Cavazzana-Calvo M, Hacein-Bey S, de Saint BG, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288:669–672.

    Article  CAS  PubMed  Google Scholar 

  8. Sakuma T, Barry MA, Ikeda Y. Lentiviral vectors: basic to translational. Biochem J. 2012;443:603–618.

    Article  CAS  PubMed  Google Scholar 

  9. Wold WSM, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther. 2013;13:421–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balakrishnan B, Jayandharan GR. Basic biology of adeno-associated virus (AAV) vectors used in gene therapy. Curr Gene Ther. 2014;14:86–100.

    Article  CAS  PubMed  Google Scholar 

  11. Grieger JC, Samulski RJ. Adeno-associated virus vectorology, manufacturing, and clinical applications. Methods Enzym. 2012;507:229–254.

    Article  CAS  Google Scholar 

  12. Yla-Herttuala S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther. 2012;p:1831–1832.

    Article  Google Scholar 

  13. Junquera E, Aicart E. Cationic lipids as transfecting agents of DNA in gene therapy. Curr Top Med Chem. 2014;14:649–663.

    Article  CAS  PubMed  Google Scholar 

  14. Wagner E. Polymers for nucleic acid transfer-an overview. Adv Genet. 2014;88:231–261.

    Article  PubMed  Google Scholar 

  15. Bates K, Kostarelos K. Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv Drug Deliv Rev. 2013;65:2023–2033.

    Article  CAS  PubMed  Google Scholar 

  16. Shcharbin D, Pedziwiatr E, Blasiak J, Bryszewska M. How to study dendriplexes II: Transfection and cytotoxicity. J Control Release. 2010;141:110–127.

    Article  CAS  PubMed  Google Scholar 

  17. Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev. 2009;109:259–302.

    Article  CAS  PubMed  Google Scholar 

  18. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4:581–593.

    Article  CAS  PubMed  Google Scholar 

  19. von Gersdorff K, Sanders NN, Vandenbroucke R, De Smedt SC, Wagner E, Ogris M. The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther. 2006;14:745–753.

    Article  Google Scholar 

  20. Duncan R, Richardson SCW. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm. 2012;9:2380–2402.

    Article  CAS  PubMed  Google Scholar 

  21. Zaki NM, Tirelli N. Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opin Drug Deliv. 2010;7:895–913.

    Article  CAS  PubMed  Google Scholar 

  22. de Ruiz GAP, Solinis AMA, Rodriguez GA, Ganjian H, Fuchs R. Role of endocytic uptake in transfection efficiency of solid lipid nanoparticles-based nonviral vectors. J Gene Med. 2013;15:427–440.

    Article  Google Scholar 

  23. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri J‑C, Gazeau F. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials. 2003;24:1001–1011.

    Article  CAS  PubMed  Google Scholar 

  24. del Pozo-Rodriguez A, Delgado D, Solinis MA, Gascon AR, Pedraz JL. Solid lipid nanoparticles: formulation factors affecting cell transfection capacity. Int J Pharm. 2007;339:261–268.

    Article  PubMed  Google Scholar 

  25. Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577–5591.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vercauteren D, Rejman J, Martens TF, Demeester J, De Smedt SC, Braeckmans K. On the cellular processing of non-viral nanomedicines for nucleic acid delivery: mechanisms and methods. J Control Release. 2012;161:566–581.

    Article  CAS  PubMed  Google Scholar 

  27. Favretto ME, Wallbrecher R, Schmidt S, van de Putte R, Brock R. Glycosaminoglycans in the cellular uptake of drug delivery vectors – bystanders or active players? J Control Release. 2014;180:81–90.

    Article  CAS  PubMed  Google Scholar 

  28. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61:428–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bahrami B, Mohammadnia-Afrouzi M, Bakhshaei P, Yazdani Y, Ghalamfarsa G, Yousefi M, et al. Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour Biol. 2015;36:5727–5742.

    Article  CAS  PubMed  Google Scholar 

  30. de Tros IC, Duzgunes N. Delivery of therapeutic nucleic acids via transferrin and transferrin receptors: lipoplexes and other carriers. Expert Opin Drug Deliv. 2013;10:1583–1591.

    Article  Google Scholar 

  31. Ashraf SQ, Nicholls AM, Wilding JL, Ntouroupi TG, Mortensen NJ, Bodmer WF. Direct and immune mediated antibody targeting of ERBB receptors in a colorectal cancer cell-line panel. Proc Natl Acad Sci USA. 2012;109:21046–21051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang T, Li B, Qi S, Liu Y, Gai Y, Ye P, et al. Co-delivery of doxorubicin and Bmi1 siRNA by folate receptor targeted liposomes exhibits enhanced anti-tumor effects in vitro and in vivo. Theranostics. 2014;4:1096–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ogris M, Walker G, Blessing T, Kircheis R, Wolschek M, Wagner E. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release. 2003;91:173–181.

    Article  CAS  PubMed  Google Scholar 

  34. Ding Y, Wang W, Feng M, Wang Y, Zhou J, Ding X, et al. A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Biomaterials. 2012;33:8893–8905.

    Article  CAS  PubMed  Google Scholar 

  35. Cai L‑L, Liu P, Li X, Huang X, Ye Y‑Q, Chen F‑Y, et al. RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells. Int J Nanomedicine. 2011;6:3499–3508.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Varshosaz J, Farzan M. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. World J Gastroenterol. 2015;21:12022–12041.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Siu KS, Chen D, Zheng X, Zhang X, Johnston N, Liu Y, et al. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials. 2014;35:3435–3442.

    Article  CAS  PubMed  Google Scholar 

  38. Guo C, Al-Jamal WT, Toma FM, Bianco A, Prato M, Al-Jamal KT, et al. Design of Cationic Multiwalled carbon Nanotubes as efficient siRNA vectors for lung cancer xenograft eradication. Bioconjug Chem. 2015;26:1370–1379.

    Article  CAS  PubMed  Google Scholar 

  39. Spinato C, de Ruiz PGA, Kierkowicz M, Pach E, Martincic M, Klippstein R, et al. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy. Nanoscale. 2015; doi:10.1039/C5NR07923C.

    Google Scholar 

  40. Lacerda L, Russier J, Pastorin G, Herrero MA, Venturelli E, Dumortier H, et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials. 2012;33:3334–3343.

    Article  CAS  PubMed  Google Scholar 

  41. Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem. 2010;79:803–833.

    Article  CAS  PubMed  Google Scholar 

  42. El-Sayed A, Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther. 2013;21:1118–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pike LJ. The challenge of lipid rafts. J Lipid Res. 2009;50(Suppl):S323–8.

    PubMed  PubMed Central  Google Scholar 

  44. Jafari M, Soltani M, Naahidi S, Karunaratne DN, Chen P. Nonviral approach for targeted nucleic acid delivery. Curr Med Chem. 2012;19:197–208.

    Article  CAS  PubMed  Google Scholar 

  45. Kumari S, Mg S, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 2010;20:256–275.

    Article  CAS  PubMed  Google Scholar 

  46. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145:182–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Norbury CC, Chambers BJ, Prescott AR, Ljunggren HG, Watts C. Constitutive macropinocytosis allows TAP-dependent major histocompatibility complex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells. Eur J Immunol. 1997;27:280–288.

    Article  CAS  PubMed  Google Scholar 

  48. Mercer J, Helenius A. Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr Opin Microbiol. 2012;15:490–499.

    Article  PubMed  Google Scholar 

  49. Delgado D, del Pozo-Rodriguez A, Solinis MA, Rodriguez-Gascon A. Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: the importance of the entry pathway. Eur J Pharm Biopharm. 2011;79:495–502.

    Article  CAS  PubMed  Google Scholar 

  50. Yao J‑J, Du Y‑Z, Yuan H, You J, Hu F‑Q. Efficient gene delivery system mediated by cis-aconitate-modified chitosan-g-stearic acid micelles. Int J Nanomedicine. 2014;9:2993–3003.

    PubMed  PubMed Central  Google Scholar 

  51. Bae Y‑U, Kim B‑K, Park J‑W, Seu Y‑B, Doh K‑O. Endocytic pathway and resistance to cholesterol depletion of cholesterol derived cationic lipids for gene delivery. Mol Pharm. 2012;9:3579–3585.

    Article  CAS  PubMed  Google Scholar 

  52. Russier J, Grillaud M, Bianco A. Elucidation of the cellular uptake mechanisms of Polycationic HYDRAmers. Bioconjug Chem. 2015;26:1484–1493.

    Article  CAS  PubMed  Google Scholar 

  53. Suresh D, Zambre A, Chanda N, Hoffman TJ, Smith CJ, Robertson JD, et al. Bombesin peptide conjugated gold nanocages internalize via clathrin mediated endocytosis. Bioconjug Chem. 2014;25:1565–1579.

    Article  CAS  PubMed  Google Scholar 

  54. Yu D, Zhang Y, Mao Z, Gao C. Study of the selective uptake progress of aptamer-modified PLGA particles by liver cells. Macromol Biosci. 2013;13:1413–1421.

    Article  CAS  PubMed  Google Scholar 

  55. Bathori G, Cervenak L, Karadi I. Caveolae – an alternative endocytotic pathway for targeted drug delivery. Crit Rev Ther Drug Carr Syst. 2004;21:67–95.

    Article  Google Scholar 

  56. Perumal OP, Inapagolla R, Kannan S, Kannan RM. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials. 2008;29:3469–3476.

    Article  CAS  PubMed  Google Scholar 

  57. Gabrielson NP, Pack DW. Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. J Control Release. 2009;136:54–61.

    Article  CAS  PubMed  Google Scholar 

  58. Letoha T, Kolozsi C, Ekes C, Keller-pinter A, Kusz E, Szakonyi G, et al. Contribution of syndecans to lipoplex-mediated gene delivery. Eur J Pharm Sci. 2013;49:550–555.

    Article  CAS  PubMed  Google Scholar 

  59. Kobayashi S, Hattori Y, Osakada H, Toma K, Maitani Y, Hiraoka Y, et al. Early entry and deformation of macropinosomes correlates with high efficiency of decaarginine-polyethylene glycol-lipid-mediated gene delivery. J Gene Med. 2012;14:262–271.

    Article  CAS  PubMed  Google Scholar 

  60. Hsu CYM, Uludag H. Cellular uptake pathways of lipid-modified cationic polymers in gene delivery to primary cells. Biomater. 2012;33:7834–7848.

    Article  CAS  Google Scholar 

  61. Kasper J, Hermanns MI, Bantz C, Utech S, Koshkina O, Maskos M, et al. Flotillin-involved uptake of silica nanoparticles and responses of an alveolar-capillary barrier in vitro. Eur J Pharm Biopharm. 2013;84:275–287.

    Article  CAS  PubMed  Google Scholar 

  62. Vercauteren D, Piest M, van der Aa LJ, Soraj AM, Jones AT, Engbersen JFJ, et al. Flotillin-dependent endocytosis and a phagocytosis-like mechanism for cellular internalization of disulfide-based poly(amido amine)/DNA polyplexes. Biomaterials. 2011;32:3072–3084.

    Article  CAS  PubMed  Google Scholar 

  63. Yang HN, Park JS, Jeon SY, Park W, Na K, Park K‑H. The effect of quantum dot size and poly(ethylenimine) coating on the efficiency of gene delivery into human mesenchymal stem cells. Biomaterials. 2014;35:8439–8449.

    Article  PubMed  Google Scholar 

  64. Wang Z, Tiruppathi C, Minshall RD, Malik AB. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. Acs Nano. 2009;3:4110–4116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377:159–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ravindran S, Snee PT, Ramachandran A, George A. Acidic domain in dentin phosphophoryn facilitates cellular uptake: implications in targeted protein delivery. J Biol Chem. 2013;288:16098–16109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Han H‑S, Martin JD, Lee J, Harris DK, Fukumura D, Jain RK, et al. Spatial charge configuration regulates nanoparticle transport and binding behavior in vivo. Angew Chem Int Ed Engl. 2013;52:1414–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Boeneman K, Delehanty JB, Blanco-Canosa JB, Susumu K, Stewart MH, Oh E, et al. Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials. Acs Nano. 2013;7:3778–3796.

    Article  CAS  PubMed  Google Scholar 

  69. Langer R. Drug delivery. Drugs on target. Science. 2001;293:58–59.

    Article  CAS  PubMed  Google Scholar 

  70. Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release. 2012;164:125–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Serrano D, Bhowmick T, Chadha R, Garnacho C, Muro S. Intercellular adhesion molecule 1 engagement modulates sphingomyelinase and ceramide, supporting uptake of drug carriers by the vascular endothelium. Arter Thromb Vasc Biol. 2012;32:1178–1185.

    Article  CAS  Google Scholar 

  72. Canton I, Battaglia G. Endocytosis at the nanoscale. Chem Soc Rev. 2012;41:2718–2739.

    Article  CAS  PubMed  Google Scholar 

  73. ur Rehman Z, Zuhorn IS, Hoekstra D. How cationic lipids transfer nucleic acids into cells and across cellular membranes: recent advances. J Control Release. 2013;166:46–56.

    Article  PubMed  Google Scholar 

  74. Sheppard D. Dominant negative mutants: tools for the study of protein function in vitro and in vivo. Am J Respir Cell Mol Biol. 1994;11:1–6.

    Article  CAS  PubMed  Google Scholar 

  75. Damke H, Baba T, Warnock DE, Schmid SL. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol. 1994;127:915–934.

    Article  CAS  PubMed  Google Scholar 

  76. Galperin E, Sorkin A. Visualization of Rab5 activity in living cells by FRET microscopy and influence of plasma-membrane-targeted Rab5 on clathrin-dependent endocytosis. J Cell Sci. 2003;116:4799–4810.

    Article  CAS  PubMed  Google Scholar 

  77. Meister M, Zuk A, Tikkanen R. Role of dynamin and clathrin in the cellular trafficking of flotillins. FEBS J. 2014;281:2956–2976.

    Article  CAS  PubMed  Google Scholar 

  78. Shen W, van Dongen MA, Han Y, Yu M, Li Y, Liu G, et al. The role of caveolin-1 and syndecan-4 in the internalization of PEGylated PAMAM dendrimer polyplexes into myoblast and hepatic cells. Eur J Pharm Biopharm. 2014;88:658–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Predescu DN, Neamu R, Bardita C, Wang M, Predescu SA. Impaired caveolae function and upregulation of alternative endocytic pathways induced by experimental modulation of intersectin-1 s expression in mouse lung endothelium. Biochem Res Int. 2012;2012:672705.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ma Y, Jin J, Dong C, Cheng E‑C, Lin H, Huang Y, et al. High-efficiency siRNA-based gene knockdown in human embryonic stem cells. RNA. 2010;16:2564–2569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rajendran L, Knolker H‑J, Simons K. Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov. 2010;9:29–42.

    Article  CAS  PubMed  Google Scholar 

  82. Prabha S, Zhou W‑Z, Panyam J, Labhasetwar V. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm. 2002;244:105–115.

    Article  CAS  PubMed  Google Scholar 

  83. Lechardeur D, Verkman AS, Lukacs GL. Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev. 2005;57:755–767.

    Article  CAS  PubMed  Google Scholar 

  84. Shim MS, Kwon YJ. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev. 2012;64:1046–1059.

    Article  CAS  PubMed  Google Scholar 

  85. Martin ME, Rice KG. Peptide-guided gene delivery. Aaps J. 2007;9:E18–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–7301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Midoux P, Monsigny M. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug Chem. 1999;10:406–411.

    Article  CAS  PubMed  Google Scholar 

  88. John JV, Johnson RP, Heo MS, Moon BK, Byeon SJ, Kim I. Polymer-Block-Polypeptides and Polymer-Conjugated Hybrid Materials as Stimuli-Responsive Nanocarriers for Biomedical Applications. J Biomed Nanotechnol. 2015;11:1–39.

    Article  CAS  PubMed  Google Scholar 

  89. Li W, Nicol F, Szoka FCJ. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev. 2004;56:967–985.

    Article  CAS  PubMed  Google Scholar 

  90. Carmona S, Jorgensen MR, Kolli S, Crowther C, Salazar FH, Marion PL, et al. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Mol Pharm. 2009;6:706–717.

    Article  CAS  PubMed  Google Scholar 

  91. Zelphati O, Szoka FCJ. Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci USA. 1996;93:11493–11498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xiang S, Tong H, Shi Q, Fernandes JC, Jin T, Dai K, et al. Uptake mechanisms of non-viral gene delivery. J Control Release. 2012;158:371–378.

    Article  CAS  PubMed  Google Scholar 

  93. Li JJ, Hartono D, Ong C‑N, Bay B‑H, L‑YL Y. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials. 2010;31:5996–6003.

    Article  CAS  PubMed  Google Scholar 

  94. Sramkova M, Parente L, Wigand T, Aye M‑P, Shitara A, Weigert R. Polyethylenimine-mediated expression of transgenes in the acinar cells of rats salivary glands in vivo. Front Cell Dev Biol. 2014;2:74.

    PubMed  PubMed Central  Google Scholar 

  95. Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release. 2006;116:255–264.

    Article  CAS  PubMed  Google Scholar 

  96. Ooya T, Choi HS, Yamashita A, Yui N, Sugaya Y, Kano A, et al. Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery. J Am Chem Soc. 2006;128:3852–3853.

    Article  CAS  PubMed  Google Scholar 

  97. Fasbender A, Zabner J, Zeiher BG, Welsh MJ. A low rate of cell proliferation and reduced DNA uptake limit cationic lipid-mediated gene transfer to primary cultures of ciliated human airway epithelia. Gene Ther. 1997;4:1173–1180.

    Article  CAS  PubMed  Google Scholar 

  98. Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther. 2000;7:401–407.

    Article  CAS  PubMed  Google Scholar 

  99. van der Aa MAEM, Mastrobattista E, Oosting RS, Hennink WE, Koning GA, Crommelin DJA. The nuclear pore complex: the gateway to successful nonviral gene delivery. Pharm Res. 2006;23:447–459.

    Article  PubMed  Google Scholar 

  100. Cartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther. 2002;9:157–167.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I want to acknowledge Prof. Renate Fuchs for her priceless help both during my first steps in the study of the endocytosis as well as for the impulse given to my PhD thesis and my further development as a better scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritz Perez Ruiz de Garibay.

Ethics declarations

Conflict of interest

A. Perez Ruiz de Garibay declares no conflicts of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez Ruiz de Garibay, A. Endocytosis in gene therapy with non-viral vectors. Wien Med Wochenschr 166, 227–235 (2016). https://doi.org/10.1007/s10354-016-0450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-016-0450-5

Keywords

Schlüsselwörter

Navigation