Skip to main content
Log in

Pathophysiology of burns

Das Verbrennungstrauma: Die Pathophysiologie

  • Themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Das Verbrennungstrauma stellt weltweit ein bedeutendes Problem in der Medizin dar. Fortschritte im Bereich des therapeutischen Vorgehens, basierend auf einem besseren Verständnis der Pathophysiologie des Verbrennungs-traumas, haben den Therapieerfolg im Laufe der letzten Jahre deutlich verbessern können. Die folgende Arbeit beschreibt die Pathophysiologie des Verbrennungstraumas. Dargestellt werden neben der lokalen und systemischen Reaktion einige organspezifische Veränderungen, resultierend aus einer bestehenden Hypovolämie oder der Freisetzung von Mediatoren.

Summary

Burn injury represents a significant problem worldwide. Advances in therapy strategies, based on better understanding of the pathophysiologic responses after burn injury have improved the clinical outcome of patients with burn injuries over the past years. This article describes the present understanding of the pathophysiology of a burn injury including both the local and systemic responses, focusing on the many facets of organ and systemic effects directly resulting from hypovolemia and circulating mediators following burn trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Nguyen TT, Gilpin DA, Meyer NA, Herndon DN. Current treatment of severely burned patients. Ann Surg, 223: 14–25, 1996

    Article  PubMed  CAS  Google Scholar 

  • Gauglitz GG, Herndon DN, Kamolz LP, Jeschke MG. Die Pathophysiologie der Verbrennungswunde. In: Kamolz LP, Herndon DN, Jeschke MG (Hrsg) Verbrennungen: Diagnose, Therapie und Rehabilitation des thermischen Traumas. 1. Auflage. Springer Verlag, Wien New York, 2008

    Google Scholar 

  • Wolf S. Critical care in the severely burned: organ support and management of complications. In: Herndon DN (ed) Total burn care. 3rd edn. Saunders Elsevier, London

  • Chilbert M, Maiman D, Sances A Jr, Myklebust J, Prieto TE, Swiontek T, et al. Measure of tissue resistivity in experimental electrical burns. J Trauma, 25: 209–215, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Kolodney MS. Electrical injury mechanisms: dynamics of the thermal response. Plast Reconstr Surg, 80: 663–671, 1985

    Google Scholar 

  • Yang JY, Tsai YC, Noordhoff MS. Electrical burn with visceral injury. Burns Incl Therm Inj, 11: 207–212, 1985

    PubMed  CAS  Google Scholar 

  • Branday JM, DuQuesnay DR, Yeesing MT, Duncan ND. Visceral complications of electrical burn injury. A report of two cases and review of the literature. West Indian Med J, 38: 110–113, 1989

    PubMed  CAS  Google Scholar 

  • Honda T, Yamamoto Y, Mizuno M, Mitsusada M, Nakazawa H, Sasaki K, et al. Successful treatment of a case of electrical burn with visceral injury and full-thickness loss of the abdominal wall. Burns, 26: 587–592, 2000

    Article  PubMed  CAS  Google Scholar 

  • Moyer CA, Brentano L, Gravens DL, Margraf HW, Monafo WW Jr. Treatment of large human burns with 0.5 percent silver nitrate solution. Arch Surg, 90: 812–867, 1965

    PubMed  CAS  Google Scholar 

  • Singer AJ, McClain SA. Persistent wound infection delays epidermal maturation and increases scarring in thermal burns. Wound Repair Regen, 10: 372–377, 2002

    Article  PubMed  Google Scholar 

  • Kao CC, Garner WL. Acute burns. Plast Reconstr Surg, 101: 2482–2493, 2000

    PubMed  Google Scholar 

  • Johnson RM, Richard R. Partial-thickness burns: identification and management. Adv Skin Wound Care, 16: 178–187; quiz 88–89, 2003

    Article  PubMed  Google Scholar 

  • Ward PA, Till GO. Pathophysiologic events related to thermal injury of skin. J Trauma, 30(12 Suppl): S75–S79, 1990

    PubMed  CAS  Google Scholar 

  • Cockshott WP. The history of the treatment of burns. Surg Cynecol Obstet, 102: 116–124, 1956

    CAS  Google Scholar 

  • Haynes BW. The history of burn care. In: Boswick JAJ (ed) The art and science of burn care. Aspen Publ, Rockville, Md, pp 3–9, 1987

    Google Scholar 

  • Underhill FP, Carrington GL, Kapsinov R, Pack GT. Blood concentration changes in extensive superficial burns, and their significance for systemic treatment. Arch Intern Med, 32: 31–39, 1923

    CAS  Google Scholar 

  • Cope O, Moore FD. The redistribution of body water and fluid therapy of the burned patient. Ann Surg, 126: 1010–1045, 1947

    Article  Google Scholar 

  • Aulick LH, Wilmore DW, Mason AD, Pruin BA. Influence of the burn wound on peripheral circulation in thermally injured patients. Am J Physiol, 233: H520–H526, 1977

    PubMed  CAS  Google Scholar 

  • Settle JAD. Fluid therapy in burns. J Roy Soc Med, 1: 7–11, 1982

    Google Scholar 

  • Demling RH. Fluid replacement in burned patients. Surg Clin North Am, 67: 15–30, 1987

    PubMed  CAS  Google Scholar 

  • Demling RH, Will JA, Belzer FO. Effect of major thermal injury on the pulmonary microcirculation. Surgery, 83: 746–751, 1978

    PubMed  CAS  Google Scholar 

  • Baxter CR. Fluid volume and electrolyte changes of the early postburn period. Clin Plast Surg, 1: 693–709, 1974

    PubMed  CAS  Google Scholar 

  • Baxter CR, Cook WA, Shires GT. Serum myocardial depressant factor of burn shock. Surg Forum, 17: 1–3, 1966

    PubMed  CAS  Google Scholar 

  • Hilton JG, Marullo DS. Effects of thermal trauma on cardiac force of contraction. Burns Incl Therm Inj, 12: 167–171, 1986

    PubMed  CAS  Google Scholar 

  • Clark WR. Death due to thermal trauma. In: Dolecek R, Brizio-Molteni L, Molteni A, Traber D (eds) Endocrinology of thermal trauma. Lea & Febiger, Philadelphia, PA, pp 6–27, 1990

    Google Scholar 

  • Lund T, Reed RK. Acute hemodynamic effects of thermal skin injury in the rat. Circ Shock, 20: 105–114, 1986

    PubMed  CAS  Google Scholar 

  • Arturson G. Pathophysiological aspects of the burn syndrome. Acta Chir Scand, 274(Supp 1): 1–135, 1961

    Google Scholar 

  • Leape LL. Kinetics of burn edema formation in primates. Ann Surg, 176: 223–226, 1972

    Article  PubMed  CAS  Google Scholar 

  • Cioffi WG Jr, Vaughan GM, Heironimus JD, Jordan BS, Mason AD Jr, Pruitt BA Jr. Dissociation of blood volume and flow in regulation of salt and water balance in burn patients. Ann Surg, 214: 213–218; discussion 8–20, 1991

    Article  PubMed  Google Scholar 

  • Demling RH, Mazess RB, Witt RM, Wolberg WH. The study of burn wound edema using dichromatic absorptiometry. J Trauma, 18: 124–128, 1978

    Article  PubMed  CAS  Google Scholar 

  • Brouhard BH, Carvajal HF, Linares HA. Burn edema and protein leakage in the rat. I. Relationship to time of injury. Microvasc Res, 15: 221–228, 1978

    Article  PubMed  CAS  Google Scholar 

  • Kramer GC, Gunther RA, Nerlich ML, Zweifach SS, Demling RH. Effect of dextran 70 on increased microvascular fluid and protein flux after thermal injury. Circ Shock, 9: 529–543, 1982

    PubMed  CAS  Google Scholar 

  • Harms BA, Kramer GC, Bodai BI, Demling RH. Microvascular fluid and protein flux in pulmonary and systemic circulations after thermal injury. Microvasc Res, 23: 77–86, 1982

    Article  PubMed  CAS  Google Scholar 

  • Zetterstrom H, Arturson G. Plasma oncotic pressure and plasma protein concentration in patients following thermal injury. Acta Anaesth Scand, 24: 288–294, 1980

    Article  PubMed  CAS  Google Scholar 

  • Demling RH, Kramer GC, Harms B. Role of thermal injury–induced hypoproteinemia on edema formation in burned and nonburned tissue. Surgery, 95: 136–144, 1984

    PubMed  CAS  Google Scholar 

  • Arturson G. Microvascular permeability to macromolecules in thermal injury. Acta Physiol Scand, 463(Suppl): 111–222, 1979

    CAS  Google Scholar 

  • Kramer G, Harms B, Bodai B, Demling R, Renkin E. Mechanisms for redistribution of plasma protein following acute protein depletion. Am J Physiol, 243: H803–H809, 1982

    PubMed  CAS  Google Scholar 

  • Kinsky MP, Milner SM, Button B, Dubick MA, Kramer GC. Resuscitation of severe thermal injury with hypertonic saline dextran: effects on peripheral and visceral edema in sheep. J Trauma, 49: 844–853, 2000

    Article  PubMed  CAS  Google Scholar 

  • Elgjo GI, Traber DL, Hawkins HK, Kramer GC. Burn resuscitation with two doses of 4 mL/kg hypertonic saline dextran provides sustained fluid sparing: a 48-hour prospective study in conscious sheep. J Trauma, 49: 251–263; discussion: 63–65, 2000

    Article  PubMed  CAS  Google Scholar 

  • Elgjo GI, Poli de Figueiredo LF, Schenarts PJ, Traber DL, Traber LD, Kramer GC. Hypertonic saline dextran produces early (8–12 h) fluid sparing in burn resuscitation: a 24-h prospective, double blind study in sheep. Crit Care Med, 28: 163–171, 2000

    Article  PubMed  CAS  Google Scholar 

  • Andritsos MJ, Kinsky MP, Herndon DN, Kramer GC. Albumin only transiently reduces fluid requirements following burn injury. Shock, 15: 6, 2001

    Google Scholar 

  • Nakayama S, Kramer GC, Carlsen RC, Holcroft JW, Cala PM. Amiloride blocks membrane potential depolarization in rat skeletal muscle during hemorrhagic shock (abstract). Circ Shock, 13: 106–107, 1984

    Google Scholar 

  • Mazzoni MC, Borgstrom P, Intaglietta M, Arfors KE. Lumenal narrowing and endothelial cell swelling in skeletal muscle capillaries during hemorrhagic shock. Circ Shock, 29: 27–39, 1989

    PubMed  CAS  Google Scholar 

  • Goodman-Gilman A, Rall TW, Nies AS, Taylor R. The pharmacological basis of therapeutics. Pergamon Press, New York, 1990

    Google Scholar 

  • Harms B, Bodai B, Demling R. Prostaglandin release and altered microvascular integrity after burn injury. J Surg Res, 31: 27–28, 1981

    Article  Google Scholar 

  • Anggard E, Jonsson CE. Efflux of prostaglandins in lymph from scalded tissue. Acta Physiol Scand, 81: 440–443, 1971

    Article  PubMed  CAS  Google Scholar 

  • Arturson G. Anti-inflammatory drugs and burn edema formation. In: May R, Dogo G (eds) Care of the burn wound. Basel, Karger, pp 21–24, 1981

    Google Scholar 

  • Arturson G, Hamberg M, Jonsson CE. Prostaglandins in human burn blister fluid. Acta Physiol Scand, 87: 27–36, 1973

    Article  Google Scholar 

  • LaLonde C, Knox J, Daryani R. Topical flurbiprofen decreases burn wound-induced hypermetabolism and systemic lipid peroxidation. Surgery, 109: 645–651, 1991

    PubMed  CAS  Google Scholar 

  • Carvajal H, Linares H, Brouhard B. Effect of antihistamine, antiserotonin, and ganglionic blocking agents upon increased capillary permeability following burn edema. J Trauma, 15: 969–975, 1975

    Article  PubMed  CAS  Google Scholar 

  • Wilmore DW, Long JM, Mason AD, Skreen RW, Pruitt BA. Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg, 80: 653–659, 1974

    Google Scholar 

  • Hilton JG. Effects of sodium nitroprusside on thermal trauma depressed cardiac output in the anesthesized dog. Burns Incl Therm Inj, 10: 318–322, 1984

    PubMed  CAS  Google Scholar 

  • Friedl HS, Till GO, Tentz O, Ward PA. Roles of histamine, complement and xanthine oxidase in thermal injury of skin. Am J Pathol, 135: 203–217, 1989

    PubMed  CAS  Google Scholar 

  • Till GO, Guilds LS, Mahrougui M, Friedl HP, Trentz O, Ward PA. Role of xanthine oxidase in thermal injury of skin. Am J Pathol, 135: 195–202, 1989

    PubMed  CAS  Google Scholar 

  • Tanaka H, Matsuda H, Shimazaki S, Hanumadass M, Matsuda T. Reduced resuscitation fluid volume for second-degree burns with delayed initiation of ascorbic acid therapy. Arch Surg, 132: 158–161, 1997

    PubMed  CAS  Google Scholar 

  • Tanaka H, Lund T, Wiig H, Reed RK, Yukioka T, Matsuda H, et al. High dose vitamin C counteracts the negative interstitial fluid hydrostatic pressure and early edema generation in thermally injured rats. Burns, 25: 569–574, 1999

    Article  PubMed  CAS  Google Scholar 

  • Dubick MA, Williams CA, Elgjo GI, Kramer GC. High dose vitamin C infusion reduces fluid requirements in the resuscitation of burn injured in sheep. Shocks, 24: 139–144, 2005

    Article  CAS  Google Scholar 

  • Tanaka H, Matsuda T, Yukioka T, Matsuda H, Shimazaki S. High dose vitamin C reduces resuscitation fluid volume in severely burned patients. Proc Am Burn Assoc, 28: 77, 1996

    Google Scholar 

  • Fischer SF, Bone HG, Powell WC, McGuire R, Traber LD, Traber DL. Pyridoxalated hemoglobin polyoxyethylene conjugate does not restore hypoxic pulmonary vasoconstriction in ovine sepsis. Crit Care, 25: 1151–1159, 1997

    Google Scholar 

  • Hafner JA, Fritz H. Balance antiinflammation: the combined application of a PAF inhibitor and a cyclooxygenase inhibitor blocks the inflammatory take-off after burns. Int J Tissue React, 12: 203, 1990

    PubMed  Google Scholar 

  • Ono I, Gunji H, Hasegawa T, Harada H, Kaneko F, Matsuzaki M. Effects of a platelet activating factor antagonist on edema formation following burns. Burns, 3: 202–207, 1993

    Article  Google Scholar 

  • Fink MP. Gastrointestinal mucosal injury in experimental models of shock, trauma, and sepsis. Crit Care Med, 19: 627–641, 1991

    Article  PubMed  CAS  Google Scholar 

  • Cui X, Sheng Z, Guo Z. Mechanisms of early gastro-intestinal ischemia after burn: hemodynamic and hemorrheologic features [Chinese]. Chin J Plast Surg Burns, 14: 262–265, 1998

    CAS  Google Scholar 

  • Kiang JG, Wei-E T. Corticotropin-releasing factor inhibits thermal injury. J Pharmacol Exp Ther, 2: 517–520, 1987

    Google Scholar 

  • Crum RL, Dominie W, Hansbrough JF. Cardiovaseular and neuroburnoral responses following burn injury. Arch Surg, 125: 1065–1070, 1990

    PubMed  CAS  Google Scholar 

  • Michie DD, Goldsmith RSG, Mason AD Jr. Effects of hydralazine and high molecular weight dextran upon the circulatory responses to severe thermal burns. Circ Res, 13: 46–48, 1963

    Google Scholar 

  • Martyn JAJ, Wilson RS, Burke JF. Right ventricular function and pulmonary hemodynamics during dopamine infusion in burned patients. Chest, 89: 357–360, 1986

    Article  PubMed  CAS  Google Scholar 

  • Adams HR, Baxter CR, Izenberg SD. Decreased contractility and compliance of the left ventricle as complications of thermal trauma. Am Heart J, 108: 1477–1487, 1984

    Article  PubMed  CAS  Google Scholar 

  • Merriman Jr. TW, Jackson R. Myocardial function following thermal injury. Circ Res, 11: 66–69, 1962

    Google Scholar 

  • Horton JW, White J, Baxter CR. Aging alters myocardial response during resuscitation in burn shock. Surg Forum, 38: 249–251, 1987

    Google Scholar 

  • Baxter CR, Shires GT. Physiological response to crystalloid resuscitation of severe burns. Ann NY Acad Sci, 150: 874–894, 1968

    Article  PubMed  CAS  Google Scholar 

  • Sugi K, Newald J, Traber LD. Smoke inhalation injury causes myocardial depression in sheep. Anesthesiology, 69: A 111, 1988

    Article  Google Scholar 

  • Sugi K, Theissen JL, Traber LD, Herndon DN, Traber DL. Impact of carbon monoxide on cardiopulmonary dysfunction after smoke inhalation injury. Circ Res, 66: 69–75, 1990

    PubMed  CAS  Google Scholar 

  • Horton JW, Baxter CR, White J. Differences in cardiac responses to resuscitation from burn shock. Surg Gynecol Obstet, 168: 201–213, 1989

    PubMed  CAS  Google Scholar 

  • Horton JW, White DJ, Baxter CR. Hypertonic saline dextran resuscitation of thermal injury. Ann Surg, 211: 301–311, 1990

    PubMed  CAS  Google Scholar 

  • Horton JW, Shite J, Hunt JL. Delayed hypertonic saline dextran administration after burn injury. J Trauma, 38: 281–286, 1995

    Article  PubMed  CAS  Google Scholar 

  • Horton JW, White J, Baxter CR. The role of oxygen derived free radicles in burn-induced myocardial contractile depression. J Burn Care Rehab, 9: 589–598, 1988

    Article  CAS  Google Scholar 

  • Horton JW, Garcia NM, White J, Keffer J. Postburn cardiac contractile function and biochemical markers of postburn cardiac injury. J Am Coll Surgeons, 181: 289–298, 1995

    CAS  Google Scholar 

  • Horton JW, White J, Maass D, Sanders B. Arginine in burn injury improves cardiac performance and prevents bacterial translocation. J Appl Physiol, 84: 695–702, 1998

    PubMed  CAS  Google Scholar 

  • Cioffi WG, DeMeules JE, Gameili RL. The effects of burn injury and fluid resuscitation on cardiac function in vitro. J Traurna, 26: 638–643, 1986

    CAS  Google Scholar 

  • Murphy JT, Horton JW, Purdue GF, Hunt JL. Evaluation of troponin-I as an indicator of cardiac dysfunction following thermal injury. Burn Care Rehabil, 45: 700–704, 1997

    Google Scholar 

  • Sun K, Gong A, Wang CH, Lin BC, Zhu HN. Effect of peripheral injection of arginine vasopressin and its receptor antagonist on burn shock in the rat. Neuropeptides, 1: 17–20, 1990

    Article  Google Scholar 

  • Hilton JG. Effects of verapamil on thermal trauma depressed cardiac output in the anesthetized dog. Burns Incl Therm Inj, 10: 313–317, 1984

    PubMed  CAS  Google Scholar 

  • Pruitt PAJ, Mason ADJ, Moncrief JA. Hemodynamic changes in the early post burn patients: the influence of fluid administration and of a vasodilator (hydralazine). J Trauma, 11: 36, 1971

    Article  PubMed  Google Scholar 

  • Holm C, Horbrand F, von Donnersmarck GH, Muhlbauer W. Acute renal failure in severely burned patients. Burns, 25: 171–178, 1999

    Article  PubMed  CAS  Google Scholar 

  • Chrysopoulo MT, Jeschke MG, Dziewulski P, Barrow RE, Herndon DN. Acute renal dysfunction in severely burned adults. J Trauma, 46: 141–144, 1999

    Article  PubMed  CAS  Google Scholar 

  • Tokyay R, Zeigler ST, Traber DL, Stothert JC, Loick HM, Heggers JP, et al. Postburn gastrointestinal vasoconstriction increases bacterial and endotoxin translocation. J Am Physiology, 1521–1527, 1993

  • Shin C, Kinsky MP, Thomas JA, Traber DL, Kramer GC. Effect of cutaneous burn injury and resuscitation on the cerebral circulation. Burns, 24: 39–45, 1998

    Article  PubMed  CAS  Google Scholar 

  • Demling RH, Wong C, Jin LJ, Hechtman H, Lalonde CKW. Early lung dysfunction after major burns: role of edema and vasoactive mediators. J Trauma, 25: 959–966, 1985

    Article  PubMed  CAS  Google Scholar 

  • Demling RH, Niehaus G, Perea A, Will JA. Effect of burn-induced hypoproteinemia on pulmonary transvascular fluid filtration rate. Surgery, 85: 339–343, 1979

    PubMed  CAS  Google Scholar 

  • Bunn F, Lefebvre C, Li Wan Po A, Li L, Roberts I, Schierhout G. Human albumin solution for resuscitation and volume expansion in critically ill patients. The albumin reviewers [update in Cochrane Database Syst Rev 2002(1): CD001208; PMID: 11869596]. Cochrane Database Syst Rev 2000(2): CD001208, 2002

  • Wilkes MM, Navickis RJ. Patient survival after human albumin administration. A meta-analysis of randomized, controlled trials [comment]. Ann Intern Med, 135: 149–164, 2001

    PubMed  CAS  Google Scholar 

  • Vincent JL, Navickis RJ, Wilkes MM. Morbidity in hospitalized patients receiving human albumin: a meta-analysis of randomized, controlled trials. Crit Care Med, 33: 915–917, 2005

    Article  Google Scholar 

  • Bellomo R. Fluid resuscitation: colloids vs. crystalloids. Blood Purif, 20: 239–242, 2002

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike Keck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keck, M., Herndon, D., Kamolz, L. et al. Pathophysiology of burns. Wien Med Wochenschr 159, 327–336 (2009). https://doi.org/10.1007/s10354-009-0651-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-009-0651-2

Schlüsselwörter

Keywords

Navigation