Skip to main content
Log in

Cardiac aging – a review

Übersicht zum kardialen Altern

  • Main Topic
  • Published:
European Surgery Aims and scope Submit manuscript

Zusammenfassung

GRUNDLAGEN: Der physiologische Vorgang des Alterns bedingt vielschichtige Veränderungen auf verschiedenen Ebenen des kardiovaskulären Systems und führt schließlich zu einem progressiven Remodeling von Herz und Kreislauf. METHODIK: Ziel dieser Übersichtsarbeit ist die Darstellung der altersbedingten zellulären und molekularen Veränderungen mit besonderem Augenmerk auf die neurohumorale Antwort, die Autophagie und die extrazelluäre Matrix. ERGEBNISSE: Altersbedinge Veränderungen kommen sowohl auf der Ebene des einzelnen Kardiomyozyten, der neurohumoralen Antwort, aber auch der extrazellulären Matrix vor. Erschwert wird dies noch zur zahlreiche Interaktionen der beteiligen Partner. Einerseits kommt es im alten Herz durch Veränderungen des adrenergen Nervensystems und des Renin-Angiotensin-Systems zu einer veränderten neurohumoralen Antwort. Andererseits kommt es durch den verminderten Abtransport von intrazellulären Abbauprodukten zu einer Vermehrung des oxidativen Stresses und dadurch zu einem Anhäufen dieser Abbauprodukte in der Zelle. Schlussendlich werden auch in der extrazellulären Matrix vermehrt diese Abbauprodukte sowie Kollagen eingelagert, was die Pumpfunktion des alten Herzens weiter verschlechtert. SCHLUSSFOLGERUNGEN: Im Zuge des Alterns kommt es auf verschiedenen Ebenen des kardiovaskulären Systems zu Modifikationen. Dieses "Remodeling" wird durch die gegenseitige Beeinflussung der einzelnen Prozesse noch verstärkt. Weitere Untersuchungen werden notwendig sein um einerseits Klarheit über Ursache und Wirkung zu erhalten, andererseits um die Hierarchie dieser Abläufe zu verstehen.

Summary

BACKGROUND: Physiology of aging includes numerous modifications at different levels of the cardiovascular system, resulting in adverse remodeling of the heart and blood vessels. METHODS: The present review aims to summarize the different mechanisms in detail during the process of aging with special emphasis on the neurohumoral regulation, autophagy, and remodeling of the extracellular matrix (ECM). RESULTS: Age-associated cellular and molecular mechanisms involve cardiomyocyte function, alterations of neurohormonal regulation, as well as changes in the ECM. Moreover, interactions between the distinct territories involved in the age-related modifications increase the complexity of senescence-associated cardiovascular remodeling. Altered adrenergic and renin-angiotensin systems control neurohormonal regulation of age-associated cardiovascular function. Increased oxidative stress induces enhanced production of cellular waste material, and facilitates the detrimental effects of aging on senescent cardiomyocytes, which are unable to maintain their homeostasis and redox equilibrium due to altered autophagic capacity. Increased collagen and advanced glycation endproducts (AGEs) deposition in the ECM further worsen global function of the aging heart. CONCLUSIONS: During the aging process, several modifications in the heart and blood vessels occur at different levels of the cardiovascular system. This adverse remodeling is further influenced by a number of cross-talk actions between the separate mechanisms. Further investigations are needed to elucidate the exact cause-effect relations among the underlying mechanisms, and to clarify their hierarchical position during the course of the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 2003;107: 346–54

    Article  PubMed  Google Scholar 

  • Carnes CA, Geisbuhler TP, Reiser PJ. Age-dependent changes in contraction and regional myocardial myosin heavy chain isoform expression in rats. J Appl Physiol 2004;97:446–53

    Article  PubMed  CAS  Google Scholar 

  • Fares E, Howlett SE. Effect of age on cardiac excitation-contraction coupling. Clin Exp Pharmacol Physiol 2010;37:1–7

    Article  PubMed  CAS  Google Scholar 

  • Dai DF, Rabinovitch PS. Cardiac aging in mice and humans: the role of mitochondrial oxidative stress. Trends Cardiovasc Med 2009;19:213–20

    Article  PubMed  CAS  Google Scholar 

  • De Meyer GR, De Keulenaer GW, Martinet W. Role of autophagy in heart failure associated with aging. Heart Fail Rev 2010;15: 423–30

    Article  PubMed  Google Scholar 

  • Hotta H, Uchida S. Aging of the autonomic nervous system and possible improvements in autonomic activity using somatic afferent stimulation. Geriatr Gerontol Int 2010;Suppl.: S127–36

    Article  Google Scholar 

  • Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med 2010;2:247–57

    Article  PubMed  CAS  Google Scholar 

  • Gazoti Debessa CR, Mesiano Maifrino LB, Rodrigues de Souza R. Age related changes of the collagen network of the human heart. Mech Ageing Dev 2001;122:1049–58

    Article  PubMed  CAS  Google Scholar 

  • de Souza RR. Aging of myocardial collagen. Biogerontology 2002;3:325–35

    Article  PubMed  CAS  Google Scholar 

  • Seals DR, Esler MD. Human ageing and the sympathoadrenal system. J Physiol 2000;528(Pt 3):407–17

    Article  PubMed  CAS  Google Scholar 

  • O'Connell TD, Ishizaka S, Nakamura A, et al. The alpha(1A/C)- and alpha(1B)-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. J Clin Invest 2003;111:1783–91

    Article  PubMed  Google Scholar 

  • McCloskey DT, Turnbull L, Swigart P, et al. Abnormal myocardial contraction in alpha(1A)- and alpha(1B)-adrenoceptor double-knockout mice. J Mol Cell Cardiol 2003;35:1207–16

    Article  PubMed  CAS  Google Scholar 

  • Turnbull L, McCloskey DT, O'Connell TD, et al. Alpha 1-adrenergic receptor responses in alpha 1AB-AR knockout mouse hearts suggest the presence of alpha 1D-AR. Am J Physiol Heart Circ Physiol 2003;284:H1104–9

    PubMed  CAS  Google Scholar 

  • Xiao RP, Tomhave ED, Wang DJ, et al. Age-associated reductions in cardiac beta1- and beta2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest 1998;101:1273–82

    Article  PubMed  CAS  Google Scholar 

  • Raitt MH, Tamblyn C, Allen JM, et al. Beta-adrenergic receptor downregulation and recovery in heart and lung in the Fischer 344 rat: effects of aging and correlation with mRNA levels. J Gerontol A Biol Sci Med Sci 1995;50:B213–7

    PubMed  CAS  Google Scholar 

  • Cerbai E, Guerra L, Varani K, et al. Beta-adrenoceptor subtypes in young and old rat ventricular myocytes: a combined patch-clamp and binding study. Br J Pharmacol 1995;116:1835–42

    PubMed  CAS  Google Scholar 

  • Farrell SR, Howlett SE. The age-related decrease in catecholamine sensitivity is mediated by beta(1)-adrenergic receptors linked to a decrease in adenylate cyclase activity in ventricular myocytes from male Fischer 344 rats. Mech Ageing Dev 2008; 129:735–44

    Article  PubMed  CAS  Google Scholar 

  • Birenbaum A, Tesse A, Loyer X, et al. Involvement of beta 3-adrenoceptor in altered beta-adrenergic response in senescent heart: role of nitric oxide synthase 1-derived nitric oxide. Anesthesiology 2008;109:1045–53

    Article  PubMed  CAS  Google Scholar 

  • Cao XJ, Li YF. Alteration of messenger RNA and protein levels of cardiac alpha(1)-adrenergic receptor and angiotensin II receptor subtypes during aging in rats. Can J Cardiol 2009;25:415–20

    PubMed  CAS  Google Scholar 

  • Lindpaintner K, Jin MW, Niedermaier N, et al. Cardiac angiotensinogen and its local activation in the isolated perfused beating heart. Circ Res 1990;67:564–73

    PubMed  CAS  Google Scholar 

  • Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007;292:C82–97

    Article  PubMed  CAS  Google Scholar 

  • Corman B, Michel JB. Renin-angiotensin system, converting-enzyme inhibition and kidney function in aging female rats. Am J Physiol 1986;251(3 Pt 2):R450–5

    PubMed  CAS  Google Scholar 

  • Heymes C, Swynghedauw B, Chevalier B. Activation of angiotensinogen and angiotensin-converting enzyme gene expression in the left ventricle of senescent rats. Circulation 1994;90: 1328–33

    PubMed  CAS  Google Scholar 

  • Jones ES, Black MJ, Widdop RE. Angiotensin AT2 receptor contributes to cardiovascular remodelling of aged rats during chronic AT1 receptor blockade. J Mol Cell Cardiol 2004;37:1023–30

    Article  PubMed  CAS  Google Scholar 

  • Basso N, Cini R, Pietrelli A, et al. Protective effect of long-term angiotensin II inhibition. Am J Physiol Heart Circ Physiol 2007; 293:H1351–8

    Article  PubMed  CAS  Google Scholar 

  • Ito N, Ohishi M, Yamamoto K, et al. Renin-angiotensin inhibition reverses advanced cardiac remodeling in aging spontaneously hypertensive rats. Am J Hypertens 2007;20:792–9

    Article  PubMed  CAS  Google Scholar 

  • Gurusamy N, Lekli I, Gherghiceanu M, et al. BAG-1 induces autophagy for cardiac cell survival. Autophagy 2009;5:120–1

    Article  PubMed  CAS  Google Scholar 

  • Essick EE, Sam F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev 2010;3:168–77

    Article  PubMed  Google Scholar 

  • Groeger G, Quiney C, Cotter TG. Hydrogen peroxide as a cell-survival signaling molecule. Antioxid Redox Signal 2009;11: 2655–71

    Article  PubMed  CAS  Google Scholar 

  • Gimenez-Xavier P, Francisco R, Santidrian AF, et al. Effects of dopamine on LC3-II activation as a marker of autophagy in a neuroblastoma cell model. Neurotoxicology 2009;30:658–65

    Article  PubMed  CAS  Google Scholar 

  • Bernhard D, Laufer G. The aging cardiomyocyte: a mini-review. Gerontology 2008;54:24–31

    Article  PubMed  CAS  Google Scholar 

  • Anversa P, Leri A, Kajstura J. Cardiac regeneration. J Am Coll Cardiol 2006;47:1769–76

    Article  PubMed  Google Scholar 

  • Chen X, Wilson RM, Kubo H, et al. Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res 2007; 100:536–44

    Article  PubMed  CAS  Google Scholar 

  • Chimenti C, Kajstura J, Torella D, et al. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 2003;93:604–13

    Article  PubMed  CAS  Google Scholar 

  • Anversa P, Palackal T, Sonnenblick EH, et al. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 1990;67:871–85

    PubMed  CAS  Google Scholar 

  • Di Lisa F, Bernardi P. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res 2005;66:222–32

    Article  PubMed  CAS  Google Scholar 

  • Terman A, Kurz T, Gustafsson B, et al. The involvement of lysosomes in myocardial aging and disease. Curr Cardiol Rev 2008;4:107–15

    Article  PubMed  CAS  Google Scholar 

  • Sybers HD, Ingwall J, DeLuca M. Autophagy in cardiac myocytes. Recent Adv Stud Cardiac Struct Metab 1976;12:453–63

    PubMed  CAS  Google Scholar 

  • Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 2006;281:29776–87

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y, Kyoi S, Takagi H, et al. Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 2008;4:409–15

    PubMed  CAS  Google Scholar 

  • Petrovski G, Das S, Juhasz B, et al. Cardioprotection by Endoplasmic Reticulum Stress-Induced Autophagy. Antioxid Redox Signal 2011 Jan 17. [Epub ahead of print]

  • Gurusamy N, Lekli I, Mukherjee S, et al. Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 2010;86:103–12

    PubMed  CAS  Google Scholar 

  • Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007;13:619–24

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Tannous P, Johnstone JL, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 2007;117:1782–93

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Frangogiannis NG. The role of inflammatory and fibrogenic pathways in heart failure associated with aging. Heart Fail Rev 2010;15:415–22

    Article  PubMed  CAS  Google Scholar 

  • Brooks WW, Conrad CH. Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J Mol Cell Cardiol 2000;32:187–95

    Article  PubMed  CAS  Google Scholar 

  • Sciarretta S, Paneni F, Palano F, et al. Role of the renin-angiotensin-aldosterone system and inflammatory processes in the development and progression of diastolic dysfunction. Clin Sci (Lond) 2009;116:467–77

    Article  CAS  Google Scholar 

  • Chen MM, Lam A, Abraham JA, et al. CTGF expression is induced by TGF-beta in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol 2000; 32:1805–19

    Article  PubMed  CAS  Google Scholar 

  • Robert V, Besse S, Sabri A, et al. Differential regulation of matrix metalloproteinases associated with aging and hypertension in the rat heart. Lab Invest 1997;76:729–38

    PubMed  CAS  Google Scholar 

  • Bonnema DD, Webb CS, Pennington WR, et al. Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). J Card Fail 2007;13:530–40

    Article  PubMed  CAS  Google Scholar 

  • Spinale FG, Gunasinghe H, Sprunger PD, et al. Extracellular degradative pathways in myocardial remodeling and progression to heart failure. J Card Fail 2002;8(6 Suppl.):S332–8

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Zhang J, Walker SJ, et al. Involvement of NADPH oxidase in age-associated cardiac remodeling. J Mol Cell Cardiol 2010;48:765–72

    Article  PubMed  CAS  Google Scholar 

  • Asif M, Egan J, Vasan S, et al. An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci USA 2000;97:2809–13

    Article  PubMed  CAS  Google Scholar 

  • Shapiro BP, Owan TE, Mohammed SF, et al. Advanced glycation end products accumulate in vascular smooth muscle and modify vascular but not ventricular properties in elderly hypertensive canines. Circulation 2008;118:1002–10

    Article  PubMed  CAS  Google Scholar 

  • Ramasamy R, Vannucci SJ, Yan SS, et al. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005;15: 16R–28

    Article  PubMed  CAS  Google Scholar 

  • Baynes JW. The role of AGEs in aging: causation or correlation. Exp Gerontol 2001;36:1527–37

    Article  PubMed  CAS  Google Scholar 

  • Gao ZQ, Yang C, Wang YY, et al. RAGE upregulation and nuclear factor-kappaB activation associated with ageing rat cardiomyocyte dysfunction. Gen Physiol Biophys 2008;27:152–8

    PubMed  Google Scholar 

  • Li HT, Long CS, Gray MO, et al. Cross talk between angiotensin AT1 and alpha 1-adrenergic receptors: angiotensin II downregulates alpha 1a-adrenergic receptor subtype mRNA and density in neonatal rat cardiac myocytes. Circ Res 1997;81: 396–403

    PubMed  CAS  Google Scholar 

  • Li YF, Shi ST. Age-dependent differential crosstalk between alpha(1)-adrenergic and angiotensin receptors. Can J Cardiol 2009;25:481–5

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Czuriga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czuriga, D., Papp, Z., Czuriga, I. et al. Cardiac aging – a review. Eur Surg 43, 69–77 (2011). https://doi.org/10.1007/s10353-011-0600-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10353-011-0600-3

Schlüsselwörter

Keywords

Navigation