Skip to main content
Log in

Stromatolites from the Aptian Crato Formation, a hypersaline lake system in the Araripe Basin, northeastern Brazil

  • Original Paper
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The origin of the Cretaceous laminites of the Crato Formation, Araripe Basin, northeastern Brazil, has been intensely debated since the beginning of the last century. The monotonous, up to 10-m-thick succession composed of very fine fossiliferous laminites in the middle of the unit lacked diagnostic features for assigning a chemically or biologically induced origin for this facies. The presence of a highly diverse and very well preserved allochthonous to parautochthonous fossil assemblage, associated with scattered halite pseudomorphs throughout the succession, led many authors to believe that these limestones were chemically deposited in a highly stressful, evaporitic shallow-water environment, such as a hypersaline lake close to marine environments. Recently, a micro- and ultrastructural analysis of the laminites yielded structures undoubtedly associated with a biological origin. Several examples of lithified in situ preserved coccoid and filamentous cells and extracellular polymeric substances suggest that the deposition of the laminated limestones was, at some levels, strongly influenced by microbial activity. Here, we record various examples of stromatolite microbialites (mounds, domes, and pseudo-columns) found at distinct stratigraphic levels in the middle part of the Crato Formation. Macro-, meso-, and microscopic features confirm the biologically induced mineralization and the existence of metabolic activity of microbes during the formation of the laminites. Biomat growth may also have played a major role in the excellent preservation of fossils in this famous Cretaceous Konservat-Lagerstätte from Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arp G, Helms G, Karlinska K, Schumann G, Reimer A, Reitner J, Trichet J (2012) Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Geomicrobiol J 29:29–65. doi:10.1080/01490451.2010.521436

    Article  Google Scholar 

  • Assine ML (1992) Análise estratigráfica da Bacia do Araripe, Nordeste do Brasil. Revista Brasileira de Geociências 22:289–300

    Google Scholar 

  • Assine ML (2007) Bacia do Araripe. Boletim de Geociências da Petrobras 15:371–389

    Google Scholar 

  • Assine ML, Perinotto JAJ, Neumann VH, Custódio MA, Varejão FG, Mescolotti PC (2014) Sequências Deposicionais do Andar Alagoas (Aptiano superior) da Bacia do Araripe, Nordeste do Brasil. Boletim de Geociências da Petrobras. 22(1):3–28

    Google Scholar 

  • Assine ML, Quaglio F, Warren LV, Simões MG (2016) Comments on paper by M. Arai, “Aptian/Albian (Early Cretaceous) paleogeography of the South Atlantic: a paleontological perspective”. Braz J Geol 46:3–7

    Google Scholar 

  • Baez AM, Moura GJB, Gómez RO (2009) Anurans from the Lower Crato Formation of northeastern Brazil: implications for the early divergence of neobatrachians. Cretac Res 30:829–846

    Article  Google Scholar 

  • Barling N, Martill DM, Heads SW, Gallien F (2015) High fidelity preservation of fossil insects from the Crato Formation (Lower Cretaceous) of Brazil. Cretac Res 52 Part B 605‒622. doi:http://dx.doi.org/10.1016/j.cretres.2014.05.007

  • Barthel KW, Swinburne NHM, Conway Morris S (1994) Solnhofen: a study in Mesozoic palaeontology. Cambridge University Press, Cambridge

    Google Scholar 

  • Benzerara K et al (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Natl Acad Sci 103:9440–9445

    Article  Google Scholar 

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411

    Article  Google Scholar 

  • Briggs DE, McMahon S (2016) The role of experiments in investigating the taphonomy of exceptional preservation. Palaeontology 59:1–11

    Article  Google Scholar 

  • Brito Neves BB, Santos EJ, Van Schmus WR (2000) Tectonic history of the Borborema Province, northeastern Brazil. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America. 31º International Geological Congress, Rio de Janeiro, pp 151‒182

  • Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularity laminated structures in an Early Archean chert-barite unit from North Pole, Western Australia. Alcheringa 5:161–181

    Article  Google Scholar 

  • Castro DL, Branco RMGC (1999) Caracterização da arquitetura interna das bacias do Vale do Cariri (NE do Brasil) com base em modelagem gravimétrica 3-D. Braz J Geophys 17:129–144

    Google Scholar 

  • Catto B (2015) Laminitos microbiais no Membro Crato (Neoaptiano) da Bacia do Aararipe, nordeste do Brasil. Master dissertation, São Paulo State University

  • Catto B, Jahnert RJ, Warren LV, Varejão FG, Assine ML (2016) The microbial nature of laminated limestones: lessons from the Upper Aptian, Araripe Basin, Brazil. Sediment Geol. doi:10.1016/j.sedgeo.2016.05.007

  • Chafetz HS, Buczynski C (1992) Bacterially induced lithification of microbial mats. Palaios 7:277–293. doi:10.2307/3514973

    Article  Google Scholar 

  • Cizer Ö, Van Balen K, Elsen J, Van Gemert D (2008) Crystal morphology of the precipitated calcite crystals from accelerated carbonation of lime binders. In: 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering, 2008. University of Rome “La Sapienza”, Rome, pp 149‒158

  • Decho AW (2000) Exopolymer microdomains as a structuring agent for heterogeneity within microbial films. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 1–9

    Google Scholar 

  • Decho AW, Visscher PT, Reid RP (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeogr Palaeoclimatol Palaeoecol 219:71–86. doi:10.1016/j.palaeo.2004.10.015

    Article  Google Scholar 

  • Défarge C, Trichet J, Jaunet A-M, Robert M, Tribble J, Sansone FJ (1996) Texture of microbial sediments revealed by cryo-scanning electron microscopy. J Sediment Res 66:935–947

    Google Scholar 

  • Demicco RV, Hardie LA (1994) Sedimentary structures and early diagenetic features of shallow-marine carbonate deposits. Atlas series 1. Society of Economic Paleontologists and Mineralogists, Tulsa

    Google Scholar 

  • Des Marais D (1995) The biogeochemistry of hypersaline microbial mats. In: Jones JG (ed) Advances in microbial ecology, vol 14, pp 251‒274. doi:10.1007/978-1-4684-7724-5_6

  • Do Carmo DA, Whatley R, Neto JVQ, Coimbra JC (2008) On the validity of two lower Cretaceous non-marine ostracode genera: biostratigraphic and paleogeographic implications. J Paleontol 82:790–799

    Article  Google Scholar 

  • Dravis JJ (1983) Hardened subtidal stromatolites, Bahamas. Science 219:385–386. doi:10.1126/science.219.4583.385

    Article  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162. doi:10.1016/j.earscirev.2008.10.005

    Article  Google Scholar 

  • Fairchild TR, Rohn R, Dias-Brito D (2015) Microbialitos do Brasil: do Pré-Cambriano ao Recente. UNEPetro, Rio Claro

    Google Scholar 

  • Farías ME, Poiré DG, Arrouy MJ, Albarracin VH (2011) Modern stromatolite ecosystems at alkaline and hypersaline high-altitude lakes in the Argentinean Puna. In: Tewari V, Seckbach J (eds) Stromatolites: interaction of microbes with sediments. Springer Netherlands, Dordrecht, pp 427‒441. doi:10.1007/978-94-007-0397-1_19

  • Farías ME et al (2013) The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PLoS One 8:1–15

    Google Scholar 

  • Fürsich FT, Sha J, Jiang B, Pan Y (2007) High resolution palaeoecological and taphonomic analysis of Early Cretaceous lake biota, western Liaoning (NE-China). Palaeogeogr Palaeoclimatol Palaeoecol 253:434–457

    Article  Google Scholar 

  • Gehling JG (1999) Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks. Palaios 14:40–57

    Article  Google Scholar 

  • Grey K (1989) Handbook for the study of stromatolites and associated structures. Stromatolite Newsl 14:82–171

    Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian Carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358

    Article  Google Scholar 

  • Hagadorn JW, Bottjer DJ (1997) Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology 25:1047–1050

    Article  Google Scholar 

  • Heimhofer U, Hochuli P-A (2010) Early Cretaceous angiosperm pollen from a low-latitude succession (Araripe Basin, NE Brazil). Rev Palaeobot Palynol 161:105–126. doi:10.1016/j.revpalbo.2010.03.010

    Article  Google Scholar 

  • Heimhofer U, Martill DM (2007) The sedimentological and depositional environment of the Crato Formation. In: Martill DM, Bechly G, Loveridge RF (eds) The Crato fossil beds of Brazil: Window into an ancient world. Cambridge University Press, New York, pp 44–62

    Chapter  Google Scholar 

  • Heimhofer U, Ariztegui D, Lenniger M, Hesselbo SP, Martill DM, Rios-Netto AM (2010) Deciphering the depositional environment of the laminated Crato fossil beds (Early Cretaceous, Araripe Basin, North-eastern Brazil). Sedimentology 57:677–694. doi:10.1111/j.1365-3091.2009.01114.x

    Article  Google Scholar 

  • Hofmann H (1969) Attributes of stromatolites. Geol Surv Can Pap 69:58

    Google Scholar 

  • Iniesto M, Lopez-Archilla AI, Fregenal-Martínez M, Buscalioni AD, Guerrero MC (2013) Involvement of microbial mats in delayed decay: an experimental essay on fish preservation. Palaios 28:56–66. doi:10.2110/palo.2011.p11-099r

    Article  Google Scholar 

  • Jahnke LL et al (2001) Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of aquificales representatives. Appl Environ Microbiol 67:5179–5189

    Article  Google Scholar 

  • Keupp H (1977) Ultrafazies und Genese der Solnhofener Plattenkalke (Oberer Malm, Südliche Frankenalb). Abhandlungen der Naturhistorischen Gesellschaft Nürnberg 37:1–128

    Google Scholar 

  • Kremer B (2006) Mat-forming coccoid cyanobacteria from early Silurian marine deposits of Sudetes, Poland. Acta Palaeontol Pol 51:143–154

    Google Scholar 

  • Mabesoone JM, Tinoco IM (1973) Paleoecology of Aptian Santana Formation (northeastern Brazil). Palaeogeogr Palaeoclimatol Palaeoecol 14:87–118

    Article  Google Scholar 

  • Magnavita LP, Cupertino JA (1987) Concepção atual sobre as Bacias do Tucano e Jatobá, Nordeste do Brasil. Boletim de Geociência da Petrobras 1:119–13416

    Google Scholar 

  • Maisey JG (1991) Santana fossils—an illustrated atlas. TFH Publishers, Neptune City, NJ

    Google Scholar 

  • Makarkin VN, Menon F (2005) New species of the Mesochrysopidae (Insecta, Neuroptera) from the Crato Formation of Brazil (Lower Cretaceous), with taxonomic treatment of the family. Cretac Res 26:801–812

    Article  Google Scholar 

  • Marques F, Nogueira F, Bezerra F, de Castro D (2014) The Araripe Basin in NE Brazil: an intracontinental graben inverted to a high-standing horst. Tectonophysics 630:251–264

    Article  Google Scholar 

  • Martill DM (1988) Preservation of fish in the Cretaceous Santana Formation of Brazil. Palaeontology 31:1–18

    Google Scholar 

  • Martill DM, Bechly G (2007) Introduction to the Crato Formation. In: Martill DM, Bechly G, Loveridge RF (eds) The Crato fossil beds of Brazil: window into an ancient world. Cambridge University Press, New York, pp 3–7

    Chapter  Google Scholar 

  • Martill DM, Bechly G, Loveridge RF (eds) (2007a) The Crato fossil beds of Brazil—window into an ancient world, 1st edn. Cambridge University Press, New York

    Google Scholar 

  • Martill DM, Loveridge R, Heimhofer U (2007b) Halite pseudomorphs in the Crato Formation (Early Cretaceous, Late Aptian–Early Albian), Araripe Basin, northeast Brazil: further evidence for hypersalinity. Cretac Res 28:613–620

    Article  Google Scholar 

  • Martill DM, Brito PM, Washington-Evans J (2008) Mass mortality of fishes in the Santana Formation (Lower Cretaceous, ?Albian) of northeast Brazil. Cretac Res 29:649–658

    Article  Google Scholar 

  • Martins-Neto RG (2006) Insetos fósseis como bioindicadores em depósitos sedimentares: um estudo de caso para o Cretáceo da Bacia do Araripe (Brasil). Revista Brasileira de Zoociências 8:155–183

    Google Scholar 

  • Matos RMD (1992) The northeast Brazilian rift system. Tectonics 11:766–791

    Article  Google Scholar 

  • Menon F, Martill DM (2007) Taphonomy and preservation of Crato Formation arthropods. In: Martill DM, Bechly G, Loveridge RF (eds) The Crato fossil beds of Brazil: window into an ancient world. Cambridge University Press, New York, pp 79–96

    Chapter  Google Scholar 

  • Milani EJ, Davison I (1988) Basement control and transfer tectonics in the Recôncavo-Tucano-Jatobá rift. Northeast Braz Tectonophys 154:41–70

    Article  Google Scholar 

  • Mohr BAR, Eklund H (2003) Araripia florifera, a magnoliid angiosperm from the Lower Cretaceous Crato Formation (Brazil). Rev Palaeobot Palynol 126:279–292

    Article  Google Scholar 

  • Mohr KI, Brinkmann N, Friedl T (2011) Cyanobacteria. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer Netherlands, Dordrecht, pp 306‒311. doi:10.1007/978-1-4020-9212-1_221

  • Montes-Hernandez G, Sarret G, Hellmann R, Menguy N, Testemale D, Charlet L, Renard F (2011) Nanostructured calcite precipitated under hydrothermal conditions in the presence of organic and inorganic selenium. Chem Geol 290:109–120. doi:10.1016/j.chemgeo.2011.09.007

    Article  Google Scholar 

  • Neumann VH (1999) Estratigrafia, sedimentologia, geoquímica y diagénesis de los sistemas lacustres Aptienses-Albienses de lá Cuenca de Araripe (Nororeste do Brasil). Universitat de Barcelona, Tese de Doctorado

    Google Scholar 

  • Neumann VH, Borregob AG, Cabrerac L, Dinod R (2003) Organic matter composition and distribution through the Aptian–Albian lacustrine sequences of the Araripe Basin, northeastern Brazil. Int J Coal Geol 54:21–40. doi:10.1016/S0166-5162(03)00018-1

    Article  Google Scholar 

  • Perry RS et al (2007) Defining biominerals and organominerals: direct and indirect indicators of life. Sediment Geol 201:157–179. doi:10.1016/j.sedgeo.2007.05.014

    Article  Google Scholar 

  • Poiré DG, López Agosti V, Albarracin VH, Arrouy MJ, Polerecky L, Farías ME (2010) Modern microbial mats from hypersaline lakes in the Puna, Andean Range, Argentina. Paper presented at the 18 international sedimentological congress, Mendoza

  • Ponte FC, Ponte Filho FC (1996) Estrutura geológica e evolução tectônica da Bacia do Araripe. Departamento Nacional de Produção Mineral, Recife

    Google Scholar 

  • Porada H, Ghergut J, Bouougri EH (2008) Kinneyia-type wrinkle structures—critical review and model of formation. Palaios 23:65–77

    Article  Google Scholar 

  • Preiss W (1972) The systematics of South Australian Precambrian and Cambrian stromatolites. Trans R Soc Aust 96:67–100

    Google Scholar 

  • Raff RA et al (2014) Microbial ecology and biofilms in the taphonomy of soft tissues. Palaios 29:560–569. doi:10.2110/palo.2014.043

    Article  Google Scholar 

  • Reeder RJ (1983) Crystal chemistry of the rhombohedral carbonates. Rev Miner Geochem 11:1–47

    Google Scholar 

  • Reid RP, Macintyre IG, Browne KM, Steneck RS, Miller T (1995) Modern marine stromatolites in the Exuma Cays, Bahamas: uncommonly common. Facies 33:1–17. doi:10.1007/bf02537442

    Article  Google Scholar 

  • Reitner J (2011) Das Salz der Erde. “Leben im Extremen”. Geowissenschaftliches Museum, Göttingen

    Google Scholar 

  • Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 55–87

    Chapter  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214. doi:10.1046/j.1365-3091.2000.00003.x

    Article  Google Scholar 

  • Riding R (2008) Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geol Croat 61:73–103

    Google Scholar 

  • Rodriguez-Blanco JD, Shaw S, Benning LG (2011) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, viavaterite. Nanoscale 3:265–271. doi:10.1039/C0NR00589D

    Article  Google Scholar 

  • Saenger C, Miller M, Smittenberg RH, Sachs JP (2006) A physico-chemical survey of inland lakes and saline ponds: Christmas Island (Kiritimati) and Washington (Teraina) Islands, Republic of Kiribati. Saline Syst 2:1–15. doi:10.1186/1746-1448-2-8

    Article  Google Scholar 

  • Sayão J, Kellner A (1998) Pterosaur wing with soft tissue from the Crato Member (Aptian–Albian), Santana Formation, Brazil. J Vertebr Paleontol 15:75A

    Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc B Biol Sci 361:869–885

    Article  Google Scholar 

  • Silva AL, Neumann VH (2003) Formação Crato da Bacia do Araripe: um reservatório análogo ao calcário Trairí (Formação Paracuru), Bacia do Ceará. In: 2º Congresso Brasileiro de P&D em Petróleo & Gás, Rio de Janeiro

  • Sumner DY (1997) Late Archean calcite–microbe interactions; two morphologically distinct microbial communities that affected calcite nucleation differently. Palaios 12:302–318

    Article  Google Scholar 

  • Trichet J, Défarge C, Tribble J, Tribble G, Sansone F (2001) Christmas Island lagoonal lakes, models for the deposition of carbonate–evaporite–organic laminated sediments. Sediment Geol 140:177–189

    Article  Google Scholar 

  • Visscher PT, Surgeon TM, Hoeft SE, Bebout BM, Thompson Jr. J, Reid RP (2002) Microelectrode studies in modern marine stromatolites: unravelling the Earth’s past? In: Taillefert M, Rozan TF (eds) Electrochemical methods for the environmental analysis of trace metal biogeochemistry. ACS symposium series, vol 220, pp 265‒282. Cambridge University Press, New York

  • Walter MR (1972) Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Spec Pap Palaeontol 11:1–256

    Google Scholar 

  • Whitton BA, Potts M (2000) Introduction to the cyanobacteria. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic, Dordrecht, pp 1–11

    Google Scholar 

  • Wilby PR, Briggs DE, Bernier P, Gaillard C (1996) Role of microbial mats in the fossilization of soft tissues. Geology 24:787–790

    Article  Google Scholar 

  • Wittkop CA, Teranes JL, Dean WE, Guilderson TP (2009) A lacustrine carbonate record of Holocene seasonality and climate. Geology 37:695–698. doi:10.1130/g30056a.1

    Article  Google Scholar 

Download references

Acknowledgements

We are deeply indebted to Pablo Suarez-Gonzalez, Universidad Complutense de Madrid, for his very constructive comments on an earlier version of this manuscript. The reviews by Eduardo Roemers-Oliveira and an anonymous reviewer are also gratefully acknowledged. The authors thank Suzana Aparecida Matos da Silva for assistance in the field and photography. Financial supported by CNPq (Grants 444070/2014-1, 401039/2014-5, 30017/2015-3), FAPESP (Grant 2014/27337-8, 2004/15786-0) and Petrobras (0050.0023165.06.4) is gratefully acknowledged. We also thank the Center for Geosciences Applied to Petroleum Geology, São Paulo State University (UNESPetro-UNESP), for the laboratory facilities for Scanning Electron Microscopy, petrographic macroscopy and magnifier stereoscopy. This research was conducted with institutional support of the São Paulo State University-UNESP, Brazil. Assine, M.G. Simões and L.V. Warren are fellows of the CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Veríssimo Warren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren, L.V., Varejão, F.G., Quaglio, F. et al. Stromatolites from the Aptian Crato Formation, a hypersaline lake system in the Araripe Basin, northeastern Brazil. Facies 63, 3 (2017). https://doi.org/10.1007/s10347-016-0484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-016-0484-6

Keywords

Navigation