Skip to main content

Advertisement

Log in

Foraminiferal biostratigraphy and glacioeustatic control on cyclic carbonate microfacies in the Viséan–Serpukhovian boundary beds (Aladağ Unit, Eastern Taurides, Turkey)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Aladağ Unit, one of the tectonostratigraphic units in the Tauride Belt (Turkey), comprises a nearly uninterrupted Upper Paleozoic succession including the Viséan–Serpukhovian boundary beds. These boundary beds in the Eastern Taurides are made up of mainly carbonates with some intercalations of sandstone and shale. A detailed micropaleontological study has revealed three biozones based on foraminifera. These biozones are, in ascending order, Eostaffella ikensis-Vissarionovella tujmasensis Zone (Mikhailovsky; Late Viséan), Endothyranopsis (Reitlingeropsis) cf. sphaerica-Biseriella parva Zone (Venevsky; Late Viséan) and Eostaffella pseudostruvei Zone (Tarussky; Early Serpukhovian). Traditional Viséan–Serpukhovian boundary lies between the Endothyranopsis (Reitlingeropsis) cf. sphaerica-Biseriella parva Zone and the Eostaffella pseudostruvei Zone. The presence of ‘Millerella’ sp. aff. ‘M.’ tortula specimens in the last levels of the Venevsky horizon also suggests that the measured section, has the potential for the redefinition of the Viséan–Serpukhovian boundary, which would coincide with the datum marked by the evolutionary appearance of the conodont Lochriea ziegleri. Boundary beds were deposited in open-marine, shoal, or bank and tidal flat environments, which were interpreted based on the analysis of 12 microfacies and 11 sub-microfacies types. The main microfacies types are (1) bioclastic packstone; (2) bioclastic packstone to grainstone; (3) bioclastic grainstone; (4) bioclastic-intraclastic grainstone; (5) intraclastic grainstone; (6) sandy bioclastic grainstone; (7) peloidal packstone to wackestone (8) wackestone-mudstone; (9) shale; (10) peloidal grainstone or peloidal packstone to grainstone with dark micritic intraclasts; (11) peloidal packstone to grainstone with fenestral fabric; (12) quartz arenitic sandstone. Based on the stacking patterns and vertical evolution of microfacies, several meter-scale shallowing-upward cycles, three sequences, and two intervening sequence boundaries were recognized in the studied section. Sequence boundaries, lying within the Mikhailovsky and Venevsky horizons, are the records of global sea-level changes during the first episodes of the Late Paleozoic Ice Age. The Viséan–Serpukhovian boundary falls within the transgressive systems tract of the third sequence and is correlatable with the boundary delineated in Russia. The duration of cycles is calculated as 117 ky and interpreted as orbitally induced (Milankovitch eccentricity) glacioeustatic cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Al-Tawil A, Read JF (2003) Late Mississippian (Late Meramecian-Chesterian) glacio-eustatic sequence development on an active distal foreland ramp, Kentucky, USA. In: Ahr WM, Harris PM, Morgan WA, Somerville ID (eds) Permo-Carboniferous carbonate platforms and reefs. SEPM Spec P 78 and AAPG Memoir 83, pp 35–55

  • Altıner D (1981) Recherches stratigraphique et micropaléontologique dans le Taurus Oriental au NW de Pınarbaşı (Turquie). Dissertation, Université de Genève

  • Altıner D, Özgül N (2001) Paleoforams 2001; International Conference on Paleozoic Benthic Foraminifera; Carboniferous and Permian of the allochthonous terranes of the Central Tauride Belt, southern Turkey. Guide Book, p 35

  • Amirshahkarami M, Vaziri-Moghaddama H, Taheri A (2007) Sedimentary facies and sequence stratigraphy of the Asmari formation at Chaman-Bolbol, Zagros Basin, Iran. J Asian Earth Sci 29:947–959

    Article  Google Scholar 

  • Armella C, Cabaleri N, Leanza HA (2007) Tidally dominated, rimmed-shelf facies of the Picún Leufú Formation (Jurassic/Cretaceous boundary) in southwest Gondwana, Neuquén Basin, Argentina. Cretac Res 28:961–979

    Article  Google Scholar 

  • Armstrong KA, Mamet BL (1977) Carboniferous microfacies, microfossils, and corals, Lisburne Group, arctic Alaska. Geol Surv Prof Paper 849

  • Armstrong KA, Mamet BL, Repetski JE (1992) Stratigraphy of the Mississippian system, south-central Colorado and north-central New Mexico. US Geol Surv Bull 1787-EE:1–22

  • Atakul-Özdemir A, Altıner D, Özkan-Altıner S, Yılmaz İÖ (2011) Foraminiferal biostratigraphy and sequence stratigraphy across the mid-Carboniferous boundary in the Central Taurides, Turkey. Facies 57:705–730

    Article  Google Scholar 

  • Barnett AJ, Burgess PM, Wright VP (2002) Icehouse world sea-level behaviour and resulting stratal patterns in late Visean (Mississippian) carbonate platforms: integration of numerical forward modelling and outcrop studies. Basin Res 14:417–438

    Article  Google Scholar 

  • Bertola C, Boulvain F, Da Silva AC, Poty E (2013) Sedimentology and magnetic susceptibility of Mississippian (Tournaisian) carbonate sections in Belgium. Bull Geosci 88:69–82

    Google Scholar 

  • Blomeier D, Scheibner C, Forke H (2008) Facies arrangement and cyclostratigraphic architecture of a shallow-marine, warm-water carbonate platform: the Late Carboniferous Ny Friesland Platform in eastern Spitsbergen (Pyefjellet Beds, Wordiekammen Formation, Gipsdalen Group). Facies 55:291–324

    Article  Google Scholar 

  • Carozzi AV, Reichelderfer JL (1987) Reservoir controls in carbonate offshore bars, Salem Limestone (Middle Mississippian), southeastern Illinois. Trans Ill Acad Sci 80:71–82

    Google Scholar 

  • Colombié C, Strasser A (2005) Facies, cycles, and controls on the evolution of a keep-up carbonate platform (Kimmeridgian, Swiss Jura). Sedimentology 52:1207–1227

    Article  Google Scholar 

  • Cózar P (2004) Foraminiferal and algal evidence for the recognition of the Asbian/Brigantian boundary in the Guadiato area (Mississippian, southwestern Spain). Rev Española Micropaleontol 36:367–388

    Google Scholar 

  • Cózar P, Somerville ID (2004) New algal and foraminiferal assemblages and evidence for recognition of the Asbian–Brigantian boundary in northern England. Proc Yorks Geol Soc 55:43–65

    Article  Google Scholar 

  • Cózar P, Somerville ID (2014) Latest Viséan-Early Namurian (Carboniferous) foraminifers from Britain: implications for biostratigraphic and glacioeustatic correlations. Newsl Stratigr 47:355–367

    Article  Google Scholar 

  • Cózar P, Somerville HEA, Somerville ID (2005) Foraminifera, calcareous algae and rugose corals in Brigantian (Late Viséan) limestones in NE Ireland. Proc Yorks Geol Soc 55:287–300

    Article  Google Scholar 

  • Cózar P, Somerville ID, Burges I (2008a) New foraminifers in the Visean/Serpukhovian boundary interval of the Lower Limestone Formation, Midland Valley, Scotland. J Paleontol 82:906–923

    Article  Google Scholar 

  • Cózar P, Vachard D, Somerville ID, Berkhli M, Mediana-Varea P, Rodríguez S, Said I (2008b) Late Viséan–Serpukhovian foraminiferans and calcareous algae from the Adarouch region (central Morocco), North Africa. Geol J 43:463–485

    Article  Google Scholar 

  • Cózar P, Medina-Varea P, Somerville ID, Vachard D, Rodríguez S, Said I (2014a) Foraminifers and conodonts from the late Viséan to early Bashkirian succession in the Saharan Tindouf Basin (southern Morocco): biostratigraphic refinements and implications for correlations in the western Palaeotethys. Geol J 49:271–302

    Article  Google Scholar 

  • Cózar P, Vachard D, Somerville ID, Medina-Varea P, Rodríguez S, Said I (2014b) The Tindouf Basin, a marine refuge during the Serpukhovian (Carboniferous) mass extinction in the northwestern Gondwana platform. Palaeogeogr Palaeocl 394:12–28

    Article  Google Scholar 

  • Davydov VI, Wardlaw BR, Gradstein FM (2004) The Carboniferous Period. In: Gradstein FM, Ogg JG, Smith AG (eds) A geologic time scale 2004. Cambridge University Press, Cambridge, UK, pp 222–248

  • Davydov VI, Korn D, Schmitz MD (2012) The Carboniferous period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) A geologic time scale 2012, vol 1. Elsevier, Amsterdam, pp 603–651

  • Ehrenberg N, Nielsen EB, Svânâ TA, Stemmerik L (1998) Depositional evolution of the Finnmark carbonate platform, Barents Sea: results from wells 7128/6-1 and 7128/4-1. Nor Geol Tidsskr 78:185–224

    Google Scholar 

  • Fielding CR, Frank TD, Birgenheier LP, Rygel MC, Jones AT, Roberts J (2008) Stratigraphic imprint of the Late Paleozoic ice age in eastern Australia: a record of alternating glacial and non glacial climate regime. J Geol Soc Lond 165:129–140

    Article  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Gallagher SJ, Macdermot CV, Somerville ID, Pracht M (2006) Biostratigraphy, microfacies and depositional environments of Upper Viséan limestones from the Burren region, County Clare, Ireland. Geol J 41:61–91

    Article  Google Scholar 

  • Gibshman NB, Baranova DV (2003) The foraminifers Janischewskina and ‘Millerella’, their evolutionary patterns and biostratigraphic potential for the Visean–Serpukhovian boundary. In: Wong ThE (ed) Proceedings of the XVth International congress on the Carboniferous and Permian Stratigraphy. Royal Dutch Academy of Arts and Sciences (Amsterdam), Utrecht, pp 269–281

    Google Scholar 

  • Goldhammer RK, Dunn PA, Hardie LA (1990) Depositional cycles, composite sea-level changes, cycle stacking patterns, and their hierarchy of stratigraphic forcing: examples from Alpine Triassic platform carbonates. Geol Soc Am Bull 102:535–562

    Article  Google Scholar 

  • Goldhammer RK, Harris MT, Dunn PA, Hardie LA (1993) Sequence stratigraphy and systems tract development of the Latemar Platform, Middle Triassic of the Dolomites (northern Italy): outcrop calibration keyed by cycle stacking patterns. In: Loucks RG, Sarg JF (eds) Carbonate sequence stratigraphy: recent developments and applications, vol 57. American Association of Petroleum Geologists Memoir, Tulsa, Oklahoma, pp 353–387

  • Groves JR, Yue W, Yuping Q, Richards BC, Ueno K, Xiangdong W (2012) Foraminiferal biostratigraphy of the Visean–Serpukhovian (Mississippian) boundary interval at slope and platform sections in southern Guizhou (South China). J Paleontol 86:753–774

    Article  Google Scholar 

  • Hance L, Hongfei H, Vachard D (2011) Upper Famennian to Visean foraminifers and some carbonate microproblematica from South China: Hunan, Guangxi and Guizhou. Geological Publishing House, Beijing

    Google Scholar 

  • Haq BU, Schutter SR (2008) A chronology of Paleozoic sea-level changes. Science 322:64–68

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Article  Google Scholar 

  • Hecker MR (2009) Major guide taxa for correlation of the Moscow and Donets Basins Dinantian successions with the type are (Belgium). In: Puchkov VN (ed) Carboniferous type sections in Russia and potential global stratotypes. Proceedings of the international field meeting “the historical type sections, proposed and potential GSSP of the Carboniferous in Russia”. Ufa-Sibai, pp 198–201

  • Herbig HG, Mamet B (2006) A muddy to clear carbonate ramp latest Devonian, Velbert Anticline (Rheinisches Schiefergebirge, Germany). Geol Palaeontol 40:1–25

    Google Scholar 

  • Hüneke H, Joachimski M, Buggisch W, Lützner H (2001) Marine carbonate facies in response to climate and nutrient level: the Upper Carboniferous and Permian of central Spitsbergen (Svalbard). Facies 45:93–135

    Article  Google Scholar 

  • Isbell JL, Miller MF, Wolfe KL, Lenaker PA (2003) Timing of late Paleozoic glaciation in Gondwana: was glaciations responsible for the development of northern hemisphere cyclothems? Geol Soc Am Spec 370:5–24

    Google Scholar 

  • Joachimski MM, von Bitter PH, Buggisch W (2006) Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite. Geology 34:277–280

    Article  Google Scholar 

  • Kakizaki Y, Kano A (2009) Architecture and chemostratigraphy of Late Jurassic shallow marine carbonates in NE Japan, western Paleo-Pacific. Sedim Geol 214:49–61

    Article  Google Scholar 

  • Karimi H, Ghadimvand NK, Kangazian A (2015) Sedimentary environment and sequence stratigraphy of the Kangan Formation in Kish Gas Field (Kish Well a1 Subsurface Section). Indian J Sci Technol 8:655–663

    Article  Google Scholar 

  • Kulagina EI, Pazukhin VN, Nikolaeva SV, Kochetova NN, Zainakaeva GF, Gibshman NB, Konovalova VA (2009) Serpukhovian and Bashkirian bioherm facies of the Kizil Formation in the southern Urals. Carboniferous type sections in Russia and potential global stratotypes. In: Proceedings of the international field meeting “the historical type sections, proposed and potential GSSP of the Carboniferous in Russia”, Ufa-Sibai, pp 78–96

  • Lasemi Z, Norby RD (1999) Stratigraphy, paleoenvironments, and sequence stratigraphic implications of the Middle Mississippian Carbonates in Western Illinois. In: Lasemi Z, Norby RD, Devera JA, Fouke BW, Leetaru HE, Denny FB (eds) Middle Mississippian carbonates and siliciclastics in western Illinois. ISGS Guidebook 31, p 60

  • Lehrmann DJ, Goldhammer RK (1999) Secular variation in facies and parasequence stacking patterns of platform carbonates: a guide to application of the stacking patterns technique in strata of diverse ages and settings. In: Harris DM, Saller AH, Simo JA (eds) Advances in carbonate sequence stratigraphy, Application to reservoirs, outcrops and models, vol 62, SEPM Spec Publications, Tulsa, Oklahoma, pp 187–226

  • Makhlina MKH (1996) Cyclic stratigraphy, facies and fauna of the lower Carboniferous (Dinantian) of the Moscow Syneclise and Voronezh Anteclise. In: Strogen P, Somerville ID, Jones GL (eds) Recent advances in lower Carboniferous geology, vol 107. Geological Society Special Publication, London, pp 359–369

  • Menning M, Alekseev AS, Chuvashov BI, Davydov VI, Devuyst FX, Forke HC, Grunt TA, Hance L, Heckel PH, Izokh NG, Jin YG, Jones PJ, Kotlyar GV, Kozur HW, Nemyrovska TI, Schneider JW, Wang XD, Weddige K, Weyer D, Work DM (2006) Global time scale and regional stratigraphic reference scales of central and west Europe, east Europe, Tethys, south China, and North America as used in the Devonian–Carboniferous–Permian correlation chart 2003 (DCP 2003). Palaeogeogr Palaeocl 240:318–372

    Article  Google Scholar 

  • Miller DJ, Eriksson KA (1999) Linked sequence development and global climate change: the Upper Mississippian record in the Appalachian basin. Geology 27:35–38

    Article  Google Scholar 

  • Nigmadhaznov IM, Nikolaeva SV, Konovalova VA, Orlov-Labkovsky O (2010) Integrated ammonoid, conodont and foraminiferal stratigraphy in the Paltau section, Middle Tienshan, Uzbekistan. Newsl Carbonif Stratigr 28:50–60

    Google Scholar 

  • Noé SU (1987) Facies and paleogeography of the marine Upper Permian and of the Permian–Triassic boundary in the Southern Alps (Bellerophon formation, Tesero Horizon). Facies 16:89–141

    Article  Google Scholar 

  • Ogg JG, Ogg G, Gradstein FM (2008) The concise geological time scale. Cambridge University Press, Cambridge

    Google Scholar 

  • Okuyucu C, Vachard D (2006) Late Viséan foraminifers and algae from the Cataloturan Nappe, Aladağ Mountains, Eastern Taurides, southern Turkey. Geobios 39:535–554

    Article  Google Scholar 

  • Osleger D, Read JF (1991) Relation of eustasy to stacking patterns of meter-scale carbonate cycles, Late Cambrian, USA. J Sedim Petrol 61:1225–1252

    Google Scholar 

  • Özgül N (1976) Some geological aspects of the Taurus orogenic belt-Turkey. Bull Geol Soc Turkey 19:65–78

    Google Scholar 

  • Pazukhin VN, Kulagina EI, Nikolaeva SV, Kochetova NN, Konovalova VA (2010) The Serpukhovian stage in the Verkhnyaya Kardailovka section, South Urals. Stratigr Geol Correl 18:269–289

    Article  Google Scholar 

  • Pille L, Vachard D, Argyriadis I, Aretz M (2010) Revision of the late Visean–Serpukhovian (Mississippian) calcareous algae, foraminifers and microproblematica from Balia-Maden (NW Turkey). Geobios Lyon 43:531–546

    Article  Google Scholar 

  • Poty E, Devuyst FX, Hance L (2006) Upper Devonian and Mississippian foraminiferal and rugose coral zonations of Belgium and Northern France, a tool for Eurasian correlations. Geol Mag 143:829–857

    Article  Google Scholar 

  • Proust JN, Chuvashov BI, Vennin E, Boisseau T (1998) Carbonate platform drowning in a foreland setting: the Mid-Carboniferous platform in western Urals (Russia). J Sedim Res 68:1175–1188

    Article  Google Scholar 

  • Richards B, Aretz M, Barnette A, Barskow I, Blanco-Ferrara S, Brenckle P, Clayton G, Dean M, Brooks E, Gibsman N, Hecker M, Konovola V, Corn D, Kulagina E, Lane R, Mamet B, Nemyrovska T, Nikoloeva S, Pazukhin V, Qi Y, Sanz-Lopez J, Saltzman M, Titus A, Utting J, Wang X (2010) Report of the task group of the subcommission of Carboniferous stratigraphy of the international commission of stratigraphy to establish a GSSP close to the existing Visea–Serpukhovian boundary. Newsl Carbonif Stratigr 28:30–34

    Google Scholar 

  • Richards B, Aretz M, Barnette A, Barskow I, Blanco-Ferrara S, Brenckle P, Clayton G, Dean M, Brooks E, Gibsman N, Hecker M, Konovola V, Corn D, Kulagina E, Lane R, Mamet B, Nemyrovska T, Nikoloeva S, Pazukhin V, Qi Y, Sanz-Lopez J, Saltzman M, Titus A, Utting J, Wang X (2014) Report of the task group of the subcommission of Carboniferous stratigraphy of the international commission of stratigraphy to establish a GSSP close to the existing Visean–Serpukhovian boundary. Newsl Carbonif Stratigr 31:29–33

    Google Scholar 

  • Ross CA, Ross JRP (1987) Late Paleozoic sea levels and depositional sequences. Cushman Found Foram Res Spec Publ 24:137–149

    Google Scholar 

  • Ruddiman WF, Wright HE Jr (1987) North America and adjacent oceans during the last deglaciation. Geol Soc Am, Boulder

    Book  Google Scholar 

  • Rygel MC, Fielding CR, Frank TD, Birgenheier LP (2008) The magnitude of Late Paleozoic glacioeustatic fluctuations: a synthesis. J Sedim Res 78:500–511

    Article  Google Scholar 

  • Sarg JF (1988) Carbonate sequence stratigraphy. In: Wilgus CK, Hastings BS et al (eds) Sea level changes: an integrated approach, vol 42. Soc Econ Pa, Tulsa, Oklahoma, pp 155–181

  • Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. SEPM, Concepts in sedimentology and palaeontology, n. 8, Tulsa, Oklahoma, p 200

  • Schulze F, Kuss J, Marzouk A (2005) Platform configuration, microfacies and cyclicities of the upper Albian to Turonian of west-central Jordan. Facies 50:505–527

    Article  Google Scholar 

  • Schwarzacher W (1991) Milankovitch cycles and the measurement of time. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, London, pp 855–863

    Google Scholar 

  • Sevastopulo GD, Barham M (2014) Correlation of the base of the Serpukhovian stage (Mississippian) in NW Europe. Geol Mag 151:244–253

    Article  Google Scholar 

  • Shao L, Wang D, Cai H, Wang H, Lu J, Zhang P (2011) Ramp facies in an intracratonic basin: a case study from the Upper Devonian and Lower Carboniferous in central Hunan, southern China. Geosci Front 2:409–419

    Article  Google Scholar 

  • Smith LB, Read JF (2000) Rapid onset of late Paleozoic glaciation on Gondwana: evidence from Upper Mississippian strata of the Midcontinent, United States. Geology 28:279–282

    Article  Google Scholar 

  • Somerville ID (2008) Biostratigraphic zonation and correlation of Mississippian rocks in Western Europe: some case studies in the late Viséan/Serpukhovian. Geol J 43:209–240

    Article  Google Scholar 

  • Strasser A (1984) Black-pebble occurrence and genesis in Holocene carbonate sediments (Florida Keys, Bahamas, and Tunisia). J Sedim Res 54:1097–1109

    Google Scholar 

  • Ünal E, Altıner D, Yılmaz İÖ, Özkan-Altıner S (2003) Cyclic sedimentation across the Permian–Triassic boundary (Central Taurides, Turkey). Riv Ital Paleontol Stratigr 109:359–376

    Google Scholar 

  • Vachard D, Aretz M (2004) Biostratigraphical precisions on the Early Serpukhovian (Late Mississippian), by means of a carbonate algal microflora (cyanobacteria, algae and pseudo-algae) from la Serre (Montagne Noire, France). Geobios Lyon 37:643–666

    Article  Google Scholar 

  • Vachard D, Laveine JP, Zhang S, Deng G, Lemoigne Y (1991) Calcareous microfossils (foraminiferes, algae, pseudo-algae) from the uppermost Visean of Jiu Hu near Guangzhou (Canton), People’s Republic of China. Geobios 24:675–681

    Article  Google Scholar 

  • Vail PR, Mitchum RM, Thompson S (1977) Seismic stratigraphy and global changes of sea level, Part 4: Global cycles of relative changes of the sea level. In: Payton CE (ed) Seismic stratigraphy: application to hydrocarbon exploration, vol 26. AAPG Memoir, Tulsa, Oklahoma, pp 83–98

  • Vail PR, Audemard F, Bowman SA, Eisner PN, Perez-Cruz C (1991) The stratigraphic signatures of tectonics, eustasy and sedimentology: an overview. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 617–659

    Google Scholar 

  • Vdovenko MV, Aisenverg DYE, Nemirovskaya TI, Poletaev VI (1990) An overview of Lower Carboniferous biozones of the Russian platform. J Foramin Res 20:184–194

    Article  Google Scholar 

  • Wright VP, Vanstone SD (2001) Onset of Late Paleozoic glacio-eustasy and the evolving climates of low latitude areas: a synthesis of current understanding. J Geol Soc Lond 158:579–582

    Article  Google Scholar 

  • Wu X, Xiaochi J, Yue W, Wejie W, Yuping Q (2009) The foraminiferal assemblage in the Visean–Serpukhovian boundary interval at the Yashui section, Guizhou, South China. Newsl Carbonif Stratigr 27:28–33

    Google Scholar 

  • Zhou Z, Flügel E (1986) Carbonate ramp deposition: middle to upper Carboniferous microfacies of Eastern Anhui and Southern Jiangsu, China. Facies 14:201–234

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. H.G. Herbig and the other anonymous reviewer for their valuable comments and contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demir Altıner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirel, S., Altıner, D. Foraminiferal biostratigraphy and glacioeustatic control on cyclic carbonate microfacies in the Viséan–Serpukhovian boundary beds (Aladağ Unit, Eastern Taurides, Turkey). Facies 62, 1 (2016). https://doi.org/10.1007/s10347-015-0451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-015-0451-7

Keywords

Navigation