Skip to main content
Log in

From biologically to hydrodynamically controlled carbonate production by tectonically induced paleogeographic rearrangement (Middle Miocene, Pannonian Basin)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Leitha Mountains in Austria are a chain of hills separating the southern Vienna Basin and the Danube Basin. The Lower East Alpine basement of the Leitha Mts. is covered by Middle Miocene sediments of the Badenian and Sarmatian regional stages. Close to the northeastern margin of these hills, upper Badenian successions are exposed, which are part of a coralline algal-dominated carbonate platform with hydrodynamically influenced sediments. Six sections have been logged and subjected to detailed investigation and sampling. They are characterized by inclined beds (foresets), which have been formed by unidirectional transport of sediments. Large-scale asymmetrical ripples indicate strong currents affecting shallow topset deposits. Generally, this hydrodynamically controlled sedimentation, documented by seven facies types, is reflected in a strongly reduced diversity of facies and biota, contrary to the older facies-rich middle Badenian sediments. This change from biologically to hydrodynamically controlled sedimentation led to a reduction in diversity of facies and biota. Sediment transport, however, caused secondary mass occurrences of echinoids or foraminifers derived from seagrass meadows. This study unravels the distribution and differences of middle and upper Badenian deposits of the Leitha Mountains and the influence of tectonic activity. Changes in hydrodynamics on the Leitha Platform are linked to the formation of the Danube Basin starting in the middle Badenian when a new seaway to the southeast has started to form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen JRL (1968) Current ripples: their relation to patterns of water and sediment motion. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  • Backman J, Raffi I, Rio D, Fornaciari E, Pälike H (2012) Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsl Stratigr 45:221–244

    Article  Google Scholar 

  • Belaústegui Z, Nebelsick JH, De Gibert JM, Domènech R, Martinell J (2012) A taphonomic approach to the genetic interpretation of clypeasteroid accumulations from Tarragona (Miocene, NE Spain). Lethaia 45:548–565

    Article  Google Scholar 

  • Bitner MA, Martinell J (2001) Pliocene brachiopods from the Estepona area (Málaga, south Spain). Rev. Españ Paleont 16:177–185

    Google Scholar 

  • Bitner MA, Moissette P (2003) Pliocene brachiopods from north-western Africa. Geodiversitas 25:463–479

    Google Scholar 

  • Bobies CA (1958) Über die Pedalion-Korallenfazies im Wiener und Eisenstädter Becken. Verh Geol B A 1:38–44

    Google Scholar 

  • Brzobohatý R, Stráník Z (2012) Paleogeography of the early Badenian connection between the Vienna Basin and the Carpathian Foredeep. Cent Euro J Geosci 4:126–137

    Article  Google Scholar 

  • Buchroithner MF (1984) Karte der Landsat-Bildlineamente von Österreich 1:500000. Geologische Bundesanstalt, Wien

    Google Scholar 

  • Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210:1–56

    Article  Google Scholar 

  • Cžjžek J (1852) Geologische Verhältnisse der Umgebungen von Hainburg, des Leithagebirges und der Ruster Berge. Jahrb kk Geol Reichsanst 3(4):35–55

    Google Scholar 

  • Davis RA (1992) Depositional systems: an introduction to sedimentology and stratigraphy, Sedond edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Decker K (1996) Miocene tectonics at the Alpine-Carpathian junction and the evolution of the Vienna basin. Mitt Ges Geol Bergbaustud Österr 41:33–44

    Google Scholar 

  • Decker K, Peresson H (1996) Tertiary kinematics in the Alpine-Carpathian-Pannonian system: links between thrusting, transform faulting and crustal extension. In: Wessely G, Liebl W (eds) Oil and gas in Alpidic thrusts and basins of Central and Eastern Europe, vol 5. Eur Assoc Geosci Eng Spec Publ, Helsinki, pp 69–77

    Google Scholar 

  • Dulai A (2007) Badenian (Middle Miocene) micromorphic brachiopods from Bánd and Devecser (Bakony Mountains, Hungary). Fragm Palaeont Hung 24–25:1–13

    Google Scholar 

  • Dullo WC (1983) Diagenesis of fossils of the Miocene Leitha Limestone of the Paratethys, Austria: an example for faunal modifications due to changing diagenetic environments. Facies 8:1–112

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to their depositional texture. In: Ham WE (ed) Classification of carbonate rocks–a symposium, vol 1. Am Assoc Petrol Geol Mem, Tulsa, pp 108–121

    Google Scholar 

  • Embry AF, Klovan JE (1971) A late Devonian reef tract on Northeastern Banks Island, NWT. Can Petrol Geol Bull 19:730–781

    Google Scholar 

  • Fodor L (1995) From transpression to transtension: Oligocene–Miocene structural evolution of the Vienna basin and the East Alpine-Western Carpathian junction. Tectonophysics 242:151–182

    Article  Google Scholar 

  • Fornaciari E, Di Stefano A, Rio D, Negri A (1996) Middle Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region. Micropaleontology 42:37–63

    Article  Google Scholar 

  • Friedman GM, Sanders JE, Kopaska-Merkel DC (1992) Principles of sedimentary deposits. Macmillan, New York

    Google Scholar 

  • Fuchs T (1894) Ueber abgerollte Blöcke von Nulliporen-Kalk im Nulliporen-Kalk von Kaisersteinbruch. Z Deutsch Geol Ges 46:126–130

    Google Scholar 

  • Fuchs T (1902) Über Anzeichen einer Erosionsepoche zwischen Leythakalk und sarmatischen Schichten. Sitzungsber Wiener Akad Wiss math-nat Kl CXI. pp 351–355

  • Gallagher EL, Elgar S, Thornton EB (1998) Megaripple migration in a natural surf zone. Nature 394:165–168

    Article  Google Scholar 

  • Gonera M (2012) Palaeoecology of the Middle Miocene foraminifera of the Nowy Sącz Basin (Polish Outer Carpathians). Geol Quart 56:107–116

    Google Scholar 

  • Götzinger G (1916) Geologische Beobachtungen im Miocän des nordöstlichen Leithagebirges. Verh KK Geol Reichsanst 9:197–206

    Google Scholar 

  • Harzhauser M, Piller WE (2010) Molluscs as a major part of subtropical shallow-water carbonate production—an example from a Middle Miocene oolite shoal (Upper Serravallian, Austria). In: Mutti M, Piller WE, Betzler C (eds) Carbonate systems during the Oligo-Miocene climatic transition: Int Assoc Sediment Spec Publ, Wiley-Blackwell, vol 42. pp 185–200

  • Häusler H (2007) Geologische Karte der Republik Österreich 1:50.000. Erläuterungen zu den Blättern 79 Neusiedl am See, 80 Ungarisch-Altenburg und 109 Pamhagen. Geologische Bundesanstalt, Wien

  • Häusler H, Figdor H, Hammerl C, Kohlbeck F, Lenhardt W, Schuster R (2010) Geologische Karte der Republik Österreich 1:50000. Erläuterungen zur Geologischen Karte 78 Rust. Geologische Bundesanstalt, Wien

  • Herrmann P (1973) Geologie der Umgebung des östlichen Leithagebirges (Burgenland). Mitt Ges Geol Bergbaustud 22:165–189

    Google Scholar 

  • Herrmann P, Pascher G, Pistotnik J (1993) Geologische Karte der Republik Österreich 1:50.000, 78 Rust. Geologische Bundesanstalt, Wien

  • Hohenegger J, Wagreich M (2012) Time calibration of sedimentary sections based on isolation cycles using combined cross-correlation: dating the gone Badenian stratotype (Middle Miocene, Paratethys, Vienna Basin, Austria) as an example. Int J Earth Sci (Geol Rundsch) 101:339–349

    Article  Google Scholar 

  • Hohenegger J, Ćorić S, Wagreich M (2014) Timing of the Middle Miocene Badenian stage of the Central Paratethys. Geol Carpath 65:55–66

    Article  Google Scholar 

  • Holcová K, Zágoršek K (2008) Bryozoa, foraminifera and calcareous nannoplankton as environmental proxies of the “bryozoan event” in the Middle Miocene of the Central Paratethys (Czech Republic). Palaeogeogr Palaeoclimatol Palaeoecol 267:216–234

    Article  Google Scholar 

  • Horváth F (1995) Phases of compression during the evolution of the Pannonian Basin and its bearing on hydrocarbon exploration. Mar Petrol Geol 12:837–844

    Article  Google Scholar 

  • Horváth F, Cloetingh S (1996) Stress-induced late-stage subsidence anomalies in the Pannonian basin. Tectonophysics 266:287–300

    Article  Google Scholar 

  • Horváth F, Bada G, Windhoffer G, Csontos L, Dombrádi E, Dövényi P, Fodor L, Grenerczy G, Síkhegyi F, Szafián P, Székely B, Timár G, Tóth L, Tóth T (2006) Atlas of the present-day geodynamics of the Pannonian basin: euroconform maps with explanatory text [A Pannon-medence jelenkori geodinamikájának atlasza: Euro-konform térképsorozat és magyarázó]. Magyar Geofiz 47:133–137

    Google Scholar 

  • Huismans RS, Podladchikov YY, Cloetingh S (2001) Dynamic modeling of the transition from passive to active rifting, application to the Pannonian basin. Tectonics 20:1021–1039

    Article  Google Scholar 

  • Jiříček R, Riha J (1991) Correlation of ostracod zones in the Paratethys and Tethys. Saito Hoon Kai Spec Publ 3:435–457

    Google Scholar 

  • Karrer F, Fuchs T (1868) Geologische Studien in den Tertärbildungen des Wiener Beckens. Jahrb KK Geol RA 18:269–286

    Google Scholar 

  • Kittl E (1882) Geologische Beobachtungen im Leithagebirge. Verh kk Geol Reichsanst 15(16):292–300

    Google Scholar 

  • Kováč M (2000) Geodynamický, paleogeografický a štruktúrny vývoj karpatsko—panónskeho regiónu v miocéne: nový pohlad na neogénne panvy Slovenska. VEDA, Bratislava

    Google Scholar 

  • Kováč M, Nagymarosy A, Soták J, Šutovská K (1993) Late Tertiary paleogeographic evolution of the Western Carpathians. Tectonophysics 226:401–416

    Article  Google Scholar 

  • Kováč M, Holcová K, Nagymarosy A (1999) Paleogeography, paleobathymetry and relative sea-level changes in the Danube Basin and adjacent areas. Geol Carpath 50:325–338

    Google Scholar 

  • Kováč M, Andreyeva-Grigorovich A, Bajraktarević Z, Brzobohaty R, Filipescu S, Fodor L, Harzhauser M, Nagymarosy A, Oszczypko N, Pavelić D, Rögl F, Saftić B, Sliva L, Studencka B (2007) Badenian evolution of the Central Paratethys Sea: palaeogeography, climate and eustatic sea level changes. Geol Carpath 58:579–606

    Google Scholar 

  • Kroh A, Nebelsick JH (2010) Echinoderms and Oligo-Miocene carbonate systems: potential applications in sedimentology and environmental reconstruction. In: Mutti M, Piller WE, Betzler C (eds) Carbonate systems during the Oligo-Miocene climatic transition: Int Assoc Sediment Spec Publ, Wiley-Blackwell, vol 42. pp 201–228

  • Kroh A, Harzhauser M, Piller WE, Rögl F (2003) The Lower Badenian (Middle Miocene) Hartl Formation (Eisenstadt—Sopron Basin, Austria). In: Piller WE (ed) Stratigraphia Austriaca. Österreichische Akademie der Wissenschaften. Schriftenreihe Erdwissenschaftliche Kommissionen, Vienna, pp 87–109

    Google Scholar 

  • Langer MR (1993) Epiphytic foraminifera. In: Langer MR (ed) Foraminiferal microhabitats. Mar Micropaleontol 20:235–265

  • Lankreijer A, Kováč M, Cloetingh S, Pitonak P, Hloska M, Biermann C (1995) Quantitative subsidence analysis and forward modelling of the Vienna and Danube basins: thin-skinned versus thick-skinned extension. Tectonophysics 252:433–451

    Article  Google Scholar 

  • Lirer F, Harzhauser M, Pelosi N, Piller WE, Schmid HP, Sprovieri M (2009) Astronomically forced teleconnection between Paratethyan and Mediterranean sediments during the Middle and Late Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 275:1–13

    Article  Google Scholar 

  • Mancosu A, Nebelsick JH (2013) Multiple routes to mass accumulations of clypeasteroid echinoids: a comparative analysis of Miocene echinoid beds of Sardinia. Palaeogeogr Palaeoclimatol Palaeoecol 374:173–186

    Article  Google Scholar 

  • Mandic O (2004) Pectinid bivalves from the Grund Formation (Lower Badenian, Middle Miocene, Alpine-Carpathian Foredeep)—taxonomic revision and stratigraphic significance. Geol Carpath 55:129–146

    Google Scholar 

  • Martini E (1971) Standard tertiary and quaternary calcareous nannoplankton zonation. In: Farinacci A (ed) Proceedings of the second plankton conference, Rome, 1970, pp 739–785

  • Martinuš M, Fio K, Pikelj K, Aščić Š (2012) Middle Miocene warm-temperate carbonates of Central Paratethys (Mt. Zrinska Gora, Croatia): paleoenvironmental reconstruction based on bryozoans, coralline red algae, foraminifera, and calcareous nannoplankton. Facies 59:481–504

    Article  Google Scholar 

  • Mateu-Vicens G, Box A, Deudero S, Rodríguez B (2010) Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass Posidonia ocenaica and invasive macroalgae Caulerpa spp. J Foram Res 40:134–147

    Article  Google Scholar 

  • Mattick RE, Teleki PG, Phillips RL, Clayton JL, Dávid G, Pogácsás G, Bardócz B, Simon E (1996) Structure, stratigraphy and petroleum geology of the Little Hungarian Basin, northwestern Hungary. AAPG Bull 80:1780–1800

    Google Scholar 

  • Meulenkamp JE, Kováč M, Cicha I (1996) On Late Oligocene to Pliocene depocentre migrations and the evolution of the Carpathian-Pannonian system. Tectonophysics 266:310–317

    Article  Google Scholar 

  • Moffat HA, Bottjer DJ (1999) Echinoid concentration beds: two examples from the stratigraphic spectrum. Palaeogeogr Palaeoclimatol Palaeoecol 149:329–348

    Article  Google Scholar 

  • Murray JW (1991) Ecology and palaeoecology of benthic foraminifera. Longman Scientific and Technical, Harlow

    Google Scholar 

  • Piller WE, Vavra N (1991) Das Tertiär im Wiener und Eisenstädter Becken. In: Roetzel R, Nagel N (eds) Exkursionen im Tertiär Österreichs, Molassezone—Waschbergzone—Korneuburger Becken—Wiener Becken—Eisenstädter Becken. Österreichische Paläontologische Gesellschaft, Wien, pp 161–216

    Google Scholar 

  • Piller WE, Decker K, Haas M (1996) Sedimentologie und Beckendynamik des Wiener Beckens: Sediment 96. 11. Sedimentologentreffen, Excursion guide, Geologische Bundesanstalt, Wien

  • Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4:151–168

  • Ratschbacher L, Behrmann JH, Pahr A (1990) Penninic windows at the eastern end of the Alps and their relation to the intra-Carpathian basins. Tectonophysics 172:91–105

    Article  Google Scholar 

  • Ratschbacher L, Frisch W, Linzer HG, Merle O (1991) Lateral extrusion in the Eastern Alps. Tectonics 10:257–271

    Article  Google Scholar 

  • Riedl R (1983) Fauna und Flora des Mittelmeeres. Verlag Paul Parey, Hamburg

    Google Scholar 

  • Riegl B, Piller WE (2000) Biostromal coral facies—Miocene example from the Leitha Limestone (Austria) and its actualistic interpretation. Palaios 15:399–413

    Article  Google Scholar 

  • Rohatsch A (1996) Ökologische Aspekte bei Foraminiferenfaunen der kalkigen Randfazies des Wiener Beckens. Mitt Ges Geol Bergbaustud Österr 39(40):55–63

    Google Scholar 

  • Roth-Fuchs G (1926) Erklärende Beschreibung der Formen des Leithagebirges. Geograph Jb Österreich 13:29–106

    Google Scholar 

  • Schaffer FX (1908) Geologischer Führer für Exkursionen im Inneralpinen Wienerbecken II. Teil. Sammlung geologischer Führer 13, Borntraeger, Berlin

  • Schmid H (1962) Das Jungtertiär an der Südostseite des Leithagebirges (zwischen Eisenstadt und Breitenbrunn). Unpubl PhD thesis, Wien

  • Schmid HP, Harzhauser M, Kroh A (2001) Hypoxic events on a Middle Miocene carbonate platform of the Central Paratethys (Austria, Badenian, 14 Ma). Ann Naturhist Mus Wien 102:1–50

    Google Scholar 

  • Simons DB, Richardson EV, Nordin CF (1965) Sedimentary structures generated by flow in alluvial channels. In: Middleton GV (ed) Primary sedimentary structures and their hydrodynamic interpretation, vol 12. SEPM Spec Publ, Tulsa, pp 34–52

    Chapter  Google Scholar 

  • Steininger F, Papp A (1978) Faziostratotypus: Gross Höflein NNW, Steinbruch “Fenk”, Burgenland, Österreich. In: Papp A, Cicha I, Seneš J, Steininger FF (eds) M4–Badenien (Moravien, Wielicien, Kosovien). Chronostratigraphie und Neostratotypen. Miozän der Zentralen Paratethys. Slowakische Akademie der Wissenschaften, Bratislava, pp 194–203

    Google Scholar 

  • Sternberg RW (1967) Measurements of sediment movement and ripple migration in a shallow marine environment. Mar Geol 5:195–205

    Article  Google Scholar 

  • Studencka B (1999) Remarks on Miocene bivalve zonation in the Polish part of the Carpathian Foredeep. Geol Quat 43:467–477

    Google Scholar 

  • Székely B, Zámolyi A, Draganits E, Briese C (2009) Geomorphic expression of neotectonic activity in a low relief area in an Airborne Laser Scanning DTM: a case study of the Little Hungarian Plain (Pannonian basin). Tectonophysics 474:353–366

    Article  Google Scholar 

  • Tollmann A (1955) Das Neogen am Nordwestrand der Eisenstädter Bucht. Wiss Arb Burgenld 10:1–74

    Google Scholar 

  • Van Balen RT, Cloetingh S (1995) Neural network analyses of stress-induced overpressures in the Pannonian Basin. Geophys J Int 121:532–544

    Article  Google Scholar 

  • Vrsaljko D, Pavelić D, Miknić M, Brkić M, Kovačić M, Hećimović I, Hajek-Tadesse V, Avanić R, Kurtanjek N (2006) Middle Miocene (Upper Badenian/Sarmatian) palaeoecology and evolution of the environments in the area of Medvednica Mt. (North Croatia). Geol Croat 59:51–63

    Google Scholar 

  • Wanless HR, Tedesco LP, Tyrell KM (1988) Production of subtidal tubular and surficial tempestites by Hurricane Kate, Caicos Platform, British West Indies. J Sediment Petrol 58:739–750

    Google Scholar 

  • Wiedl T, Harzhauser M, Piller WE (2012) Facies and synsedimentary tectonics on a Badenian carbonate platform in the southern Vienna Basin (Austria, Central Paratethys). Facies 58:523–548

    Article  Google Scholar 

  • Wiedl T, Harzhauser M, Kroh A, Ćorić S, Piller WE (2013) Ecospace variability along a carbonate platform at the northern boundary of the Miocene reef belt (Upper Langhian, Austria). Palaeogeogr Palaeoclimatol Palaeoecol 370:232–246

    Article  Google Scholar 

  • Williams GE (1970) The central Australian stream floods of February–March 1967. J Hydrol 11:185–200

    Article  Google Scholar 

  • Woelkerling WJ, Irvine LM, Harvey AS (1993) Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust Syst Bot 6:277–293

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks go to Gerhard Wanzenböck (Bad Vöslau) for insights into, and photographs of, his amazing collection of fossils and his precise information on their provenience. Many thanks go to Oleg Mandic (Natural History Museum Vienna) for determination of pectinids, Martin Groß (Universalmuseum Joanneum Graz) for determination of ostracods, Patrick Grunert (University of Graz) for determination of foraminifers, and to Markus Reuter (University of Graz) and Ulrike Exner (University of Vienna) for constructive discussions. The manuscript benefited from the constructive comments of the reviewers Wolf-Christian Dullo (GEOMAR Helmholtz Centre for Ocean Research Kiel) and James Nebelsick (University of Tübingen), and from the editorial advice of Franz Theodor Fürsich (University of Erlangen-Nürnberg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wiedl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiedl, T., Harzhauser, M., Kroh, A. et al. From biologically to hydrodynamically controlled carbonate production by tectonically induced paleogeographic rearrangement (Middle Miocene, Pannonian Basin). Facies 60, 865–881 (2014). https://doi.org/10.1007/s10347-014-0408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-014-0408-2

Keywords

Navigation