Skip to main content

Advertisement

Log in

Earliest diagenesis in scleractinian coral skeletons: implications for palaeoclimate-sensitive geochemical archives

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Live-collected samples of four common reef-building coral genera (Acropora, Pocillopora, Goniastrea, Porites) from subtidal and intertidal settings of Heron Reef, Great Barrier Reef, show extensive early marine diagenesis where parts of the coralla less than 3 years old contain abundant macro- and microborings and aragonite, high-Mg calcite, low-Mg calcite, and brucite cements. Many types of cement are associated directly with microendoliths and endobionts that inhabit parts of the corallum recently abandoned by coral polyps. The occurrence of cements that generally do not precipitate in normal shallow seawater (e.g., brucite, low-Mg calcite) highlights the importance of microenvironments in coral diagenesis. Cements precipitated in microenvironments may not reflect ambient seawater chemistry. Hence, geochemical sampling of these cements will contaminate trace-element and stable-isotope inventories used for palaeoclimate and dating analysis. Thus, great care must be taken in vetting samples for both bulk and microanalysis of geochemistry. Visual inspection using scanning electron microscopy may be required for vetting in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Acker KL, Risk MJ (1985) Substrate destruction and sediment production by the boring sponge Cliona caribbaea on Grand Cayman Island. J Sediment Petrol 55:705–711

    Google Scholar 

  • Aissaoui DM (1985) Botryoidal aragonite and its diagenesis. Sedimentology 32:345–361. doi:10.1111/j.1365-3091.1985.tb00516.x

    Google Scholar 

  • Allison N (1996a) Comparative determinations of trace elements in coral aragonite by ion microprobe analysis, with preliminary results from Phucket, southern Thailand. Geochim Cosmochim Acta 60:3457–3470. doi:10.1016/0016-7037(96)00171-8

    Google Scholar 

  • Allison N (1996b) Geochemical anomalies in coral skeletons and their possible implications for palaeoenvironmental analyses. Mar Chem 55:367–379. doi:10.1016/S0304-4203(96)00060-6

    Google Scholar 

  • Allison N, Finch AA, Newville M, Sutton SR (2005) Strontium in coral aragonite: 3. Sr coordination and geochemistry in relation to skeletal architecture. Geochim Cosmochim Acta 69:3801–3811. doi:10.1016/j.gca.2005.01.026

    Google Scholar 

  • Allison N, Finch AA, Webster JM, Clague DA (2007) Palaeoenvironmental records from fossil corals: the effects of submarine diagenesis on temperature and climate estimates. Geochim Cosmochim Acta 71:4693–4703. doi:10.1016/j.gca.2007.07.026

    Google Scholar 

  • Allison N, Tudhope AW (1992) Nature and significance of geochemical variation in coral skeletons as determined by ion microprobe analysis. Proceedings of 7th international coral reef symposium 1:173–178

  • Anderson KL, Tayne TA, Ward DM (1987) Formation and fate of fermentation products in hot spring cyanobacterial mats. Appl Environ Microbiol 53:2343–2352

    Google Scholar 

  • Bajnoczi B, Kovacs-Kis V (2006) Origin of pedogenic needle-fiber calcite revealed by micromorphology and stable isotope composition—a case study of a quaternary paleosol from Hungary. Chem Erde 66:203–212. doi:10.1016/j.chemer.2005.11.002

    Google Scholar 

  • Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exp Mar Biol Ecol 167:91–108. doi:10.1016/0022-0981(93)90186-R

    Google Scholar 

  • Beck JW, Edwards RL, Ito E, Taylor FW, Récy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–647. doi:10.1126/science.257.5070.644

    Google Scholar 

  • Bentis CJ, Kaufman L, Golubic S (2000) Endolithic fungi in reef-building corals (order: Scleractinia) are common, cosmopolitan, and potentially pathogenic. Biol Bull 198:254–260. doi:10.2307/1542528

    Google Scholar 

  • Berkelmans R (2002) Time-integrated thermal bleaching thresholds of reefs and their variation on the Great Barrier Reef. Mar Ecol Prog Ser 229:73–82. doi:10.3354/meps229073

    Google Scholar 

  • Berkelmans R, Oliver JK (1999) Large-scale bleaching of corals on the Great Barrier Reef. Coral Reefs 18:55–60. doi:10.1007/s003380050154

    Google Scholar 

  • Berner RA (1975) The role of magnesium in the crystal growth of calcite and aragonite in seawater. Geochim Cosmochim Acta 39:489–504. doi:10.1016/0016-7037(75)90102-7

    Google Scholar 

  • Beuck L, Vertino A, Stepina E, Karolczak M, Pfannkuche O (2007) Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with micro-computed tomography. Facies 53:157–176. doi:10.1007/s10347-006-0094-9

    Google Scholar 

  • Bischoff JL, Fyfe WS (1968) Catalysis, inhibition, and the calcite–aragonite problem. I. The aragonite–calcite transformation. Am J Sci 266:65–79

    Google Scholar 

  • Budd DA, Perkins RD (1980) Bathymetric zonation and paleoecological significance of microborings in Puerto Rican shelf and slope sediments. J Sediment Petrol 50:881–904

    Google Scholar 

  • Burford EP, Hillier S, Gadd GM (2006) Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono- and dihydrate in Carboniferous limestone microcosms. Geomicrobiol J 23:599–611. doi:10.1080/01490450600964375

    Google Scholar 

  • Buster NA, Holmes CW (2006) Magnesium content within the skeletal architecture of the coral Montastraea faveolata: locations of brucite precipitation and implications to fine-scale data fluctuations. Coral Reefs 25:243–253. doi:10.1007/s00338-006-0092-y

    Google Scholar 

  • Calcinai B, Arillo A, Cerrano C, Bavestrello G (2003) Taxonomy-related differences in the excavating micro-patterns of boring sponges. J Mar Biol Assoc UK 83:37–39

    Google Scholar 

  • Calvo E, Marshall JF, Pelejero C, McCulloch MT, Gagan MK, Lough JM (2007) Interdecadal climate variability in the Coral Sea since 1708 A.D. Palaeogeogr Palaeoclimatol Palaeoecol 248:190–201. doi:10.1016/j.palaeo.2006.12.003

    Google Scholar 

  • Castanier S, Le Metayer-Levrel G, Perthuisot J-P (1999) Ca-carbonate precipitation and limestone genesis—the microbiogeologist point of view. Sediment Geol 126:9–23. doi:10.1016/S0037-0738(99)00028-7

    Google Scholar 

  • Clode PL, Marshall AT (2003) Variation in skeletal microstructure of the coral Galaxea fascicularis: effects of an aquarium environment and preparatory techniques. Biol Bull 204:138–145. doi:10.2307/1543549

    Google Scholar 

  • Cohen AL, Layne GD, Hart SR (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16:20–26. doi:10.1029/1999PA000478

    Google Scholar 

  • Cohen AL, Owens KE, Layne GD, Shimizu N (2002) The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral. Science 296:331–333. doi:10.1126/science.1069330

    Google Scholar 

  • Coniglio M, Harrison RS (1983) Holocene and Pleistocene caliche from Big Pine Key. Bull Can Pet Geol 31:3–13

    Google Scholar 

  • Constantz BR (1986) The primary surface area of corals and variations in their susceptibility to diagenesis. In: Shroeder JH, Purser BH (eds) Reef diagenesis. Springer, Berlin, pp 53–76

    Google Scholar 

  • Corrège T (2006) Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeogr Palaeoclimatol Palaeoecol 232:408–428. doi:10.1016/j.palaeo.2005.10.014

    Google Scholar 

  • Cuif J-P, Dauphin Y (2005) The environmental recording unit in coral skeletons—a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. Biogeosciences 2:67–73

    Google Scholar 

  • Cuif J-P, Denis A, Gautret P, Marin F, Mastandrea A, Russo F (1992) Recherches sur l’alteration diagenetique des biomineralisations carbonatees: evolution de la phase organique intrasquelettique dans des polypiers aragonitiques de Madreporaires du Cenozoique (Bassin de Paris) et du Trias superieur (Dolomites et Turquie). C R Acad Sci Paris 314:1097–1102

    Google Scholar 

  • Cuif J-P, Dauphin Y, Berthet P, Jegoudez J (2004) Associated water and organic compounds in coral skeletons: quantitative thermogravimetry coupled to infrared absorption spectrometry. Geochem Geophys Geosyst 5. doi:10.1029/2004GC000783

  • Cuif J-P, Sorauf JE (2001) Biomineralization and diagenesis in the Scleractinia: part 1, biominerlization. Bull Tohoku Univ Mus 1:144–151

    Google Scholar 

  • Dauphin Y, Marin F, Gautret P, Cuif J-P (1990) Discimination des biominéralisations aragonitiques fibreuses des spongiaires, cnidaires et mollusques, par l’indice de substitution des éléments mineurs dans le reseau carbonate. CR Acad Sci Paris 314:1111–1116

    Google Scholar 

  • Davies PJ, Kinsey DW (1973) Organic and inorganic factors in recent beach rock formation, Heron Island, Great Barrier Reef. J Sediment Petrol 43:59–81

    Google Scholar 

  • Dennis C (2002) Reef under threat from bleaching outbreak. Nature 415:947. doi:10.1038/415947a

    Google Scholar 

  • Défarge C, Trichet J, Maurin A, Hucher M (1994) Kopara in Polynesian atolls: early stages of formation of calcareous stromatolites. Sediment Geol 89:9–23. doi:10.1016/0037-0738(94)90080-9

    Google Scholar 

  • de Villiers S, Nelson BK, Chivas AR (1995) Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperature. Science 269:1247–1249. doi:10.1126/science.269.5228.1247

    Google Scholar 

  • Diaz MC, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci 69:535–546

    Google Scholar 

  • Domart-Coulon I, Tambutté S, Tambutté E, Allemand D (2004) Short term viability of soft tissue detached from the skeleton of reef-building corals. J Exp Mar Biol Ecol 309:199–217. doi:10.1016/j.jembe.2004.03.021

    Google Scholar 

  • Ehrlich HL (1990) Geomicrobiology, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Enmar R, Stein M, Bar-Matthews M, Sass E, Katz A, Lazar B (2000) Diagenesis in live corals from the Gulf of Aqaba. I. The effect on paleo-oceanography tracers. Geochim Cosmochim Acta 64:3123–3132. doi:10.1016/S0016-7037(00)00417-8

    Google Scholar 

  • Fallon SJ, McCulloch MT, Alibert C (2003) Examining water temperature proxies on Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22:389–404. doi:10.1007/s00338-003-0322-5

    Google Scholar 

  • Fallon SJ, McCulloch MT, van Woesik R, Sinclair DJ (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172:221–238. doi:10.1016/S0012-821X(99)00200-9

    Google Scholar 

  • Fine M, Loya Y (2002) Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc Lond B Biol Sci 269:1205–1210. doi:10.1098/rspb.2002.1983

    Google Scholar 

  • Folk R (1974) The natural history of crystalline calcium carbonate; effect of magnesium content and salinity. J Sediment Petrol 44:40–53

    Google Scholar 

  • Frost R, Kloprogge T, Schmidt J (1999) Non-destructive identification of minerals by Raman microscopy. Int J Vibr Spectrosc 3(4):2

    Google Scholar 

  • Gaetani GA, Cohen AL (2006) Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochim Cosmochim Acta 70:4617–4634. doi:10.1016/j.gca.2006.07.008

    Google Scholar 

  • Gaffey SJ, Bronnimann CE (1993) Effects of bleaching on organic and mineral phases in biogenic carbonates. J Sediment Petrol 63:752–754

    Google Scholar 

  • Gautret P (2000) Matrices organiques intrasquelettiques des sclératiniaires récifaux: évolution diagénétique précoce de leurs caractéristiques biochimiques et conséquences pour les processus de cementation. Geobios 33:73–78. doi:10.1016/S0016-6995(00)80150-3

    Google Scholar 

  • Gautret P, Marin F (1993) Evaluation of diagenesis in scleractinian corals and calcified demosponges by substitution index measurement and intraskeletal organic matrix analysis. Courier Forschungsinstitut Senckenberg 164:317–327

    Google Scholar 

  • Gebelein CD, Hoffman P (1973) Algal origin of dolomite laminations in stromatolitic limestone. J Sediment Petrol 43:603–613

    Google Scholar 

  • Gektidis M, Dubinsky Z, Goffredo S (2006) Microendoliths of the shallow euphotic zone in open and shaded habitats at 30°N-Eilat, Israel–paleoecological implications. Facies 53:43–55. doi:10.1007/s10347-006-0091-z

    Google Scholar 

  • Ginsburg RN, James NP (1976) Submarine botryoidal aragonite in Holocene reef limestones, Belize. Geology 4:431–436. doi:10.1130/0091-7613(1976)4<431:SBAIHR>2.0.CO;2

    Google Scholar 

  • Ginsburg RN, Marszalek DS, Schneidermann N (1971) Ultrastructure of carbonate cements in a Holocene algal reef of Bermuda. J Sediment Petrol 41:472–482

    Google Scholar 

  • Gischler E, Lomando AJ (1997) Holocene cemented beach deposits in Belize. Sediment Geol 110:277–297. doi:10.1016/S0037-0738(96)00088-7

    Google Scholar 

  • Given RK, Wilkinson BH (1985) Kinetic control of morphology, composition, and mineralogy of aboitic sedimentary carbonates. J Sediment Petrol 55:109–119

    Google Scholar 

  • Golubic S, Brent G, Le Campion T (1970) Scanning electron microscopy of endolithic algae and fungi using a multipurpose casting embedding technique. Lethaia 3:203–209. doi:10.1111/j.1502-3931.1970.tb01858.x

    Google Scholar 

  • Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235. doi:10.1016/j.tim.2005.03.007

    Google Scholar 

  • Grammer GM, Crescini CM, McNeill DF, Taylor LH (1999) Quantifying rates of syndepositional marine cementation in deeper platform environments - new insight into a fundamental process. J Sediment Res 69:202–209

    Google Scholar 

  • Grammer GM, Ginsburg RN, Swart PK, McNeill DF, Jull AJ, Prezbindowski DR (1993) Rapid growth of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize. J Sediment Petrol 63:983–989

    Google Scholar 

  • Grottoli AG, Eakin CM (2007) A review of modern coral δ18O and δ14C proxy records. Earth Sci Rev 81:67–91. doi:10.1016/j.earscirev.2006.10.001

    Google Scholar 

  • Grottoli AG, Rodrigues LJ, Matthews KA, Palardy JE, Gibb OT (2005) Pre-treatment effects on coral skeletal δ13C and δ18O. Chem Geol 221:225–242. doi:10.1016/j.chemgeo.2005.05.004

    Google Scholar 

  • Gvirtzman G, Friedman GM (1976) Sequence of progressive diagenesis in coral reefs. In. Frost SH, Weiss MP, Saunders JB (eds) Reef and related carbonates-ecology and sedimentology. American association of petroleum geologists studies in geology, vol 4, pp 357–380

  • Hanor JS (1978) Precipitation of beachrock cements: mixing of marine and meteoric waters vs. CO2-degassing. J Sediment Petrol 48:489–501

    Google Scholar 

  • Hendy EJ, Gagen MK, Lough JM, McCulloch M, deMenocal PB (2007) Impact of skeletal dissolution and secondary aragonite on trace element and isotopic climate proxies in Porites corals. Palaeoceanography 22:PA4101. doi:10.1029/2007PA001462

    Google Scholar 

  • Hendy EJ, Lough JM, Gagen MK (2003) Historical mortality in massive Porites from the central Great Barrier Reef, Australia: evidence for past environmental stress? Coral Reefs 22:207–215. doi:10.1007/s00338-003-0304-7

    Google Scholar 

  • Highsmith RG (1980) Geographic patterns of coral bioerosion: a productivity hypothesis. J Exp Mar Biol Ecol 46:177–196. doi:10.1016/0022-0981(80)90030-1

    Google Scholar 

  • Hill MS (1996) Symbiotic zooxanthellae enhance boring and growth rates of the tropical sponge Anthosigmella varians forma varians. Mar Biol (Berl) 125:649–654. doi:10.1007/BF00349246

    Google Scholar 

  • Holmes KE, Edinger EN, Hariyadi, Limmon GV, Risk MJ (2000) Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Mar Pollut Bull 40:606–617. doi:10.1016/S0025-326X(00)00067-9

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866. doi:10.1071/MF99078

    Google Scholar 

  • Hoegh-Guldberg O, Fine M, Skirving W, Johnstone R, Dove S, Strong A (2005) Coral bleaching following wintry weather. Limnol Oceanogr 50:265–271

    Google Scholar 

  • Hubbard JAEB (1972) Cavity formation in living scleractinian reef corals and fossil analogues. Geol Rundsch 61:551–564. doi:10.1007/BF01896333

    Google Scholar 

  • Hubbard JAEB (1975) Life and the afterlife of reef corals: a timed study of incipient diagenesis. IX Int Sedimentol Congr 7:75–80

    Google Scholar 

  • Hubbard JAEB, Swart PK (1982) Sequence and style in scleractinian coral preservation in reefs and associated facies. Palaeogeogr Palaeoclimatol Palaeoecol 37:165–219. doi:10.1016/0031-0182(82)90038-4

    Google Scholar 

  • James NP (1972) Holocene and Pleistocene calcareous crust (caliche) profiles: critera for subaerial exposure. J Sediment Petrol 42:817–836

    Google Scholar 

  • Jordan G, Rammensee W (1996) Dissolution rates and activation of brucite (001): a new method based on the microtopography of crystal surfaces. Geochim Cosmochim Acta 60:5055–5062. doi:10.1016/S0016-7037(96)00309-2

    Google Scholar 

  • Knox GJ (1977) Caliche profile formation, Saldanha Bay (South Africa). Sedimentology 24:657–674. doi:10.1111/j.1365-3091.1977.tb00263.x

    Google Scholar 

  • Lafuste J (1970) Lames ultra-minces à faces polies. Procédé et application à la microstructure des Madréporaires fossils. CR Acad Sci Paris 270:679–681

    Google Scholar 

  • Lahann RD (1978) A chemical model for calcite growth morphology control. J Sediment Petrol 48:337–344

    Google Scholar 

  • Land LS, Moore LS (1980) Lithification, micritization and syndepositional diagenesis of biolithites on the Jamaican Island slope. J Sediment Petrol 50:357–370

    Google Scholar 

  • Lazar B, Enmar R, Schossberger M, Bar-Matthews M, Halicz L, Stein M (2004) Diagenetic effects on the distribution of uranium in live and Holocene corals from the Gulf of Aqaba. Geochim Cosmochim Acta 68:4583–4593. doi:10.1016/j.gca.2004.03.029

    Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Hutchings P (1995a) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149–157. doi:10.3354/meps117149

    Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Priess K (1995b) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Prog Ser 117:137–147. doi:10.3354/meps117137

    Google Scholar 

  • Lewis SE, Shields GA, Kamber BS, Lough JM (2007) A multi-trace element coral record of land-use changes in the Burdekin River catchment, NE Australia. Palaeogeogr Palaeoclimatol Palaeoecol 246:471–487. doi:10.1016/j.palaeo.2006.10.021

    Google Scholar 

  • Lighty RG (1985) Preservation of internal reef porosity and diagenetic sealing of submerged early Holocene Barrier Reef, Southeast Florida Shelf. In: Schneidermann N, Harris PM (eds) Carbonate cements. SEPM Spec Publ 36:123–154

  • Longman MW (1980) Carbonate diagenetic textures from nearsurface diagenetic environments. AAPG Bull 64:461–487

    Google Scholar 

  • Lukas HJ (1974) Two species of the chlorophyte genus Osreobium from skeletons of Atlantic and Caribbean reef corals. J Phycol 10:331–335

    Google Scholar 

  • Macintyre IG (1977) Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama. J Sediment Petrol 47:503–516

    Google Scholar 

  • Macintyre IG (1984) Preburial and shallow-subsurface alteration of modern scleractinian corals. Palaeontogr Am 54:229–244

    Google Scholar 

  • Macintyre IG (1985) Submarine cements—the peloidal question. In: Schneidermann N, Harris PM (eds) Carbonate cements. SEPM Spec Publ 36:109–116

  • Macintyre IG, Marshall JF (1988) Submarine lithification in coral reefs: some facts and misconceptions. Proceedings of 6th international coral reef symposium 1:263–271

    Google Scholar 

  • Macintyre IG, Prufert-Bebout L, Reid RP (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47:915–921. doi:10.1046/j.1365-3091.2000.00327.x

    Google Scholar 

  • Mackenzie FT, Bischoff WB, Bishop FC, Loijens M, Schoonmaker J, Wollast R (1983) Magnesian calcites: low-temperature occurrence, solubility and solid-solution behaviour. In: Reeder RJ (ed) Carbonate: mineralogy and chemistry. Mineral Soc Am, Chelsea, pp 97–144

    Google Scholar 

  • Marshall AT (2002) Occurrence, distribution, and localisation of metals in cnidarians. Microsc Res Tech 56:341–357. doi:10.1002/jemt.10035

    Google Scholar 

  • Marshall JF (1983) Submarine cementation in a high-energy platform reef: one tree reef, Southern Great Barrier Reef. J Sediment Petrol 53:1133–1149

    Google Scholar 

  • Marshall JF (1986) Regional distribution of submarine cements within an epicontinental reef system: central Great Barrier Reef, Australia. In: Shroeder JH, Purser BH (eds) Reef diagenesis. Springer, Berlin, pp 8–26

    Google Scholar 

  • Marshall JF, McCulloch MT (2002) An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim Cosmochim Acta 66:3263–3280. doi:10.1016/S0016-7037(02)00926-2

    Google Scholar 

  • May JA, Macintyre IG, Perkins RD (1982) Distribution of microborers within planted substrates along a barrier reef transect, Carrie Bow Cay, Belize. In: Rützler K, Macintyre IG (eds) The Atlantic Barrier Reef ecosystem at Carrie Bow Cay, Belize I: structure and communities. Smithsonian Contrib Mar Sci 12: 93–107

  • McCulloch M, Fallon S, Wyndham T, Hendy E, Lough J, Barnes D (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421:727–730. doi:10.1038/nature01361

    Google Scholar 

  • McGregor HV, Gagan MK (2003) Diagenesis and geochemistry of Porites corals from Papua New Guinea: Implications for paleoclimate reconstruction. Geochim Cosmochim Acta 67:2147–2156. doi:10.1016/S0016-7037(02)01050-5

    Google Scholar 

  • McKenna SA (1997) Interactions between the boring sponge, Cliona lampa, and two hermatypic corals from Bermuda. In: Proceedings of 8th international coral reef symposium 2:1369–1374

  • Meibom A, Cuif J-P, Hillion F, Constanz B, Juillet-Leclerc A, Dauphin Y, Watanabe T, Dunbar R (2004) Distribution of magnesium in coral skeleton. Geophys Res Lett 31:L23306. doi:10.1029/2004GL021313

    Google Scholar 

  • Meibom A, Cuif J-P, Houlbreque F, Mostefaoui S, Dauphin Y, Meibom KL, Dunbar R (2008) Compositional variations at ultra-structure length scales in coral skeleton. Geochim Cosmochim Acta 72:1555–1569. doi:10.1016/j.gca.2008.01.009

    Google Scholar 

  • Meibom A, Stage M, Wooden J, Constantz BR, Dunbar RB, Owen A, Grumet N, Bacon CR, Chamberlain CP (2003) Monthly strontium/calcium oscillations in symbiotic coral aragonite: Biological effects limiting the precision of the paleotemperature proxy. Geophys Res Lett 30:1418–1421. doi:10.1029/2002GL016864

    Google Scholar 

  • Meibom A, Yurimoto H, Cuif J-P, Domart-Coulon I, Houlbreque F, Constanz B, Dauphin Y, Tambutté E, Tambutté S, Allemand D, Wooden J, Dunbar R (2006) Vital effects in coral skeletal composition display strict three-dimensional control. Geophys Res Lett 33:L11608. doi:10.1029/2006GL025968

    Google Scholar 

  • Meldrum FC, Hyde ST (2001) Morphological influence of magnesium and organic additives on the precipitation of calcite. J Cryst Growth 231:544–558. doi:10.1016/S0022-0248(01)01519-6

    Google Scholar 

  • Mitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale PJ (1996) Mg/Ca thermometry in coral skeletons. Science 274:961–963. doi:10.1126/science.274.5289.961

    Google Scholar 

  • Mitsuguchi T, Uchida T, Matsumoto E, Isdale PJ, Kawana T (2001) Variations in Mg/Ca, Na/Ca, and Sr/Ca ratios of coral skeletons with chemical treatments: implications for carbonate geochemistry. Geochim Cosmochim Acta 65:2865–2874. doi:10.1016/S0016-7037(01)00626-3

    Google Scholar 

  • Moberly RJ (1970) Microprobe study of diagenesis in calcareous algae. Sedimentology 14:113–123. doi:10.1111/j.1365-3091.1970.tb00185.x

    Google Scholar 

  • Moberly RJ (1973) Rapid chamber-filling growth of marine aragonite and Mg–calcite. J Sediment Petrol 43:634–635

    Google Scholar 

  • Morimoto M, Kayanne H, Abe O, McCulloch MT (2007) Intensified mid-Holocene Asian monsoon records in corals from Kikai Island, subtropical northwestern Pacific. Quat Res 67:204–214. doi:10.1016/j.yqres.2006.12.005

    Google Scholar 

  • Morse JW, Arvidson RS (2002) The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci Rev 58:51–84. doi:10.1016/S0012-8252(01)00083-6

    Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier, Amsterdam

    Google Scholar 

  • Müller A, Gagan MK, Lough JM (2004) Effect of early marine diagenesis on coral reconstructions of surface-ocean 13C/12C and carbonate saturation state. Global Biogeochem Cycles 18(GB1033). doi:10.1029/2003GB002112

  • Müller A, Gagan MK, McCulloch M (2001) Early marine diagenesis in corals and geochemical consequences. Geophys Res Lett 28:4471–4474. doi:10.1029/2001GL013577

    Google Scholar 

  • Müller A, McGregor HV, Gagan MK, Lough JM (2006) The effects of early marine aragonite, Mg–calcite and vadose-zone calcite diagenesis on reconstructions of coral calcification rate and the oceanic Suess effect. In: Proceedings of 10th international coral reef symposium, pp 607–614

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona lampa. Limnol Oceanogr 11:92–108

    Google Scholar 

  • Nothdurft LD, Webb GE (2007) Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea, and Porites: constraints on spatial resolution in geochemical sampling. Facies 53:1–26. doi:10.1007/s10347-006-0090-0

    Google Scholar 

  • Nothdurft LD, Webb GE, Bostrom T, Rintoul L (2007) Calcite-filled borings in the most recently deposited skeleton in live-collected Porites (Scleractinia): implications for trace element archives. Geochim Cosmochim Acta 71:5423–5438. doi:10.1016/j.gca.2007.09.025

    Google Scholar 

  • Nothdurft LD, Webb GE, Buster NA, Holmes CW, Sorauf JE, Kloprogge JT (2005) Brucite microbialites in living coral skeletons: indicators of extreme microenvironments in shallow-marine settings. Geology 33:169–172. doi:10.1130/G20932.1

    Google Scholar 

  • Pandolfi JM, Greenstein BJ (1997) Taphonomic alteration of reef corals: effects of reef environment and coral growth form. I. The Great Barrier Reef. Palaios 12:27–42. doi:10.2307/3515292

    Google Scholar 

  • Pang RK (1973) The ecology of some Jamaican excavating sponges. Bull Mar Sci 23:227–243

    Google Scholar 

  • Perrin C (2004) Diagenese precoce des biocristaux carbonayes: tranformations isominerales de l’aragonite corallienne. Bull Soc Geol Fr 175:95–106. doi:10.2113/175.2.95

    Google Scholar 

  • Perrin C, Cuif J-P (2001) Ultrastructural controls on diagenetic patterns of scleractinian skeletons: evidence at the scale of colony lifetime. Bull Tohoku Univ Mus 1:210–218

    Google Scholar 

  • Perrin C, Smith DC (2002) A preliminary Raman spectroscopic study of the earliest steps of diagenesis of mineral and organic material in living scleractinian corals. Acta Univ Carol Geogr 46:66–68

    Google Scholar 

  • Perrin C, Smith DC (2007) Earliest steps of diagenesis in living scleractinian corals: evidence from ultrastructural pattern and Raman spectroscopy. J Sediment Res 77:495–507. doi:10.2110/jsr.2007.051

    Google Scholar 

  • Perry CT, Macdonald IA (2002) Impacts of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 186:101–113. doi:10.1016/S0031-0182(02)00446-7

    Google Scholar 

  • Pomponi SA (1980) Cytological mechanisms of calcium carbonate excavation by boring sponges. Int Rev Cytol 65:301–319. doi:10.1016/S0074-7696(08)61963-4

    Google Scholar 

  • Potthast I (1992) Short-term progressive early diagenesis in density bands of recent corals: Porites colonies, Mauritius Island, Indian Ocean. Facies 27:105–112. doi:10.1007/BF02536806

    Google Scholar 

  • Potts DC, Swart PK (1984) Water temperature as an indicator of environmental variability on a coral reef. Limnol Oceanogr 20:504–516

    Article  Google Scholar 

  • Priess K, Le Campion-Alsumard T, Golubic S, Gadel F, Thomassin BA (2000) Fungi in corals: black bands and density-banding of Porites lutea and P. lobata skeleton. Mar Biol (Berl) 136:19–27. doi:10.1007/s002270050003

    Google Scholar 

  • Przenioslo R, Stolarski J, Mazur M, Brunelli M (2008) Hierarchically structured scleractinian coral biocrystals. J Struct Biol 161:74–82. doi:10.1016/j.jsb.2007.09.020

    Google Scholar 

  • Quinn TM, Taylor FW (2006) SST artifacts in coral proxy records produced by early marine diagenesis in a modern coral from Rabaul, Papua New Guinea. Geophys Res Lett 33:L04601. doi:10.1029/2005GL024972

    Google Scholar 

  • Rehman J, Jones B, Hagan TH, Coniglio M (1994) The influence of sponge borings on aragonite-to-calcite inversion in Late Pleistocene Stombus gigas from Grand Cayman, British West Indies. J Sediment Res A64:174–179

    Google Scholar 

  • Reid RP, Macintyre IG (2000) Microboring versus recrystallization: further insight into the micritization process. J Sediment Res 70:24–28. doi:10.1306/2DC408FA-0E47-11D7-8643000102C1865D

    Google Scholar 

  • Reitner J (1993) Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia): formation and concepts. Facies 29:3–40. doi:10.1007/BF02536915

    Google Scholar 

  • Reitner J, Gautret P, Marin F, Neuweiler F (1995) Automicrites in a modern marine microbialite. Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). Bull Inst Océanogr Monaco Spec 14(2):237–263

    Google Scholar 

  • Reuter M, Brachert TC, Kroeger KF (2005) Diagenesis of growth bands in fossil scleractinian corals: identification and modes of preservation. Facies 51:146–159. doi:10.1007/s10347-005-0064-7

    Google Scholar 

  • Revelle R, Emery KO (1957) Chemical erosion of beach rock and exposed reef rock. In: US Geol Surv Prof Paper, Reston, pp 699–709

  • Riding R (2000) Microbial carbonate: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214. doi:10.1046/j.1365-3091.2000.00003.x

    Google Scholar 

  • Risk MJ, MacGeachy JK (1978) Aspects of erosion of modern Caribbean reefs. Rev Biol Trop 26:85–105

    Google Scholar 

  • Risk MJ, Pagani SE, Elias RJ (1987) Another internal clock: preliminary estimates of growth rates based on cycles of algae boring activity. Palaios 2:323–331. doi:10.2307/3514757

    Google Scholar 

  • Rollion-Bard C, Blamart D, Cuif J-P, Juillet-Leclerc A (2003) Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs 22:405–415. doi:10.1007/s00338-003-0347-9

    Google Scholar 

  • Runnalls LA, Coleman ML (2003) Record of natural and anthropogenic changes in reef environments (Barbados West Indies) using laser ablation ICP-MS and sclerochronolgy on coral cores. Coral Reefs 22:416–426. doi:10.1007/s00338-003-0349-7

    Google Scholar 

  • Rützler K (1975) The role of burrowing sponges in bioerosion. Oceologia 19:203–216. doi:10.1007/BF00345306

    Google Scholar 

  • Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Mar Biol (Berl) 21:144–162. doi:10.1007/BF00354611

    Google Scholar 

  • Scherer M (1974) The influence of two endolithic micro-organisms on the diagenesis of recent coral skeletons. N Jahrb Geol PaläontMh 9:557–566

    Google Scholar 

  • Schönberg CH (2000) Bioeroding sponges common to the central Australian Great Barrier Reef: description of three new species, two new records, and additions to two previously described species. Senckenb Marit 30:161–221

    Article  Google Scholar 

  • Schönberg CH (2002) Substrate effects on the bioeroding demosponge Cliona orientalis. 1. Bioerosion rates. Mar Ecol (Berl) 23:313–326. doi:10.1046/j.1439-0485.2002.02811.x

    Google Scholar 

  • Schönberg CHL (2008) A history of sponge erosion: from past myths and hypotheses to recent approaches. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Heidelberg, pp 165–202

    Google Scholar 

  • Schönberg CH, de Beer D, Lawton A (2005) Oxygen microsensor studies on zooxanthellate clionaid sponges from the Costa Brava, Mediterranean Sea. J Phycol 41:774–779. doi:10.1111/j.0022-3646.2005.04226.x

    Google Scholar 

  • Schroeder JH (1972) Calcified filaments of an endolithic alga in recent Bermuda reefs. N Jahrb Geol PaläontMh 1:16–33

    Google Scholar 

  • Scoffin TP, Bradshaw C (2000) The taphonomic significance of endoliths in dead- versus live-coral skeletons. Palaios 15:248–254

    Google Scholar 

  • Shinn EA (1969) Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology 12:109–144. doi:10.1111/j.1365-3091.1969.tb00166.x

    Google Scholar 

  • Shirai K, Kusakabe M, Nakai S, Ishii T, Watanabe T, Hiyagon H, Sano Y (2005) Deep-sea coral geochemistry: implication for the vital effect. Chem Geol 224:212–222. doi:10.1016/j.chemgeo.2005.08.009

    Google Scholar 

  • Sinclair DJ (2005) Correlated trace element “vital effects” in tropical corals: a new geochemical tool for probing biomineralization. Geochim Cosmochim Acta 69:3265–3284. doi:10.1016/j.gca.2005.02.030

    Google Scholar 

  • Sinclair DJ, Kinsley LPJ, McCulloch MT (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62:1889–1901. doi:10.1016/S0016-7037(98)00112-4

    Google Scholar 

  • Sinclair DJ, McCulloch MT (2004) Corals record low mobile barium concentrations in the Burdekin River during the 1974 flood: evidence for limited Ba supply to rivers? Palaeogeogr Palaeoclimatol Palaeoecol 214:155–174

    Google Scholar 

  • Sinclair DJ, Risk MJ (2006) A numerical model of trace-element coprecipitation in a physicochemical calcification system: application to coral biomineralization and trace element ‘vital effects’. Geochim Cosmochim Acta 70:3855–3868. doi:10.1016/j.gca.2006.05.019

    Google Scholar 

  • Smith PL, De Long RC (1978) Brucite in modern corals, Abs with programs. Geol Soc Am 10(7):494

    Google Scholar 

  • Sorauf JE (1972) Skeletal microstructure and microarchitecture in Scleractinia (Coelenterata). Palaeontology 15:88–107

    Google Scholar 

  • Sorauf JE, Cuif J-P (2001) Biomineralization and diagenesis in the Scleractinia: part 2, diagenesis. Bull Tohoku Univ Mus 1:152–163

    Google Scholar 

  • Stolarski J, Mazur M (2005) Nanostructure of biogenic versus abiogenic calcium carbonate crystals. Acta Palaeontol Pol 50:847–865

    Google Scholar 

  • Supko PR (1971) “Whisker” crystal cement in a Bahamian rock. In: Bricker OP (ed) Carbonate cements. Studies in Geology, vol 19. John Hopkins University, Baltimore, pp 143–146

  • Vénec-Peyré M-T, Boyer H (1978) Application de la microsonde moléculaire à laser MOLE à l’étude de test de quelques foraminiferes calcaires. CR Acad Sci D 287:607

    Google Scholar 

  • Verrecchia EP, Loisy C, Braissant O, Gorbushina AA (2003) The role of fungal biofilms and networks in the terrestrial calcium carbonate cycle. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms—a natural history of life on Earth. Kluwer, Dordrecht, pp 363–369

    Google Scholar 

  • Verrecchia EP, Verrecchia KE (1994) Needles-fiber calcite: a critical review and a proposed classification. J Sediment Res A64:650–664

    Google Scholar 

  • Vieira MM, De Ros LF (2006) Cementation patterns and genetic implications of Holocene beachrocks from northern Brazil. Sediment Geol 192:207–230. doi:10.1016/j.sedgeo.2006.04.011

    Google Scholar 

  • Vogel K, Gektidis M, Golubic S, Kiene WE, Radtke G (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions. Lethaia 33:190–204. doi:10.1080/00241160025100053

    Google Scholar 

  • Ward WC (1975) Petrology and diagenesis of carbonate eolianites of NE Yucatan Peninsula, Mexico. In: Belize Shelf carbonate sediment and ecology. AAPG Stud Geol 2:500–571

  • Ward P, Risk MJ (1977) Boring pattern of the sponge Cliona vermifera in the coral Montastrea annularis. J Paleontol 51:520–526

    Google Scholar 

  • Webb GE (2001) Biologically induced carbonate precipitation in reefs through time. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer Academic/Plenum Publishers, New York, pp 159–203

    Google Scholar 

  • Webb GE, Jell JS, Baker JC (1999) Cryptic intertidal microbialites in beachrock, Heron Island, Great Barrier Reef: Implications for the origin of microcrystalline beachrock cement. Sediment Geol 126:317–334. doi:10.1016/S0037-0738(99)00047-0

    Google Scholar 

  • Webb GE, Baker JC, Jell JS (1998) Inferred syngenetic textural evolution in Holocene cryptic reefal microbialites, Heron Reef, Great Barrier Reef, Australia. Geology 26:355–358. doi:10.1130/0091-7613(1998)026<0355:ISTEIH>2.3.CO;2

    Google Scholar 

  • Weiss CP, Wilkinson BH (1988) Holocene cementaion along the central Texas coast. J Sediment Petrol 58:468–478

    Google Scholar 

  • Whittle GL, Kendall CG, Dill RF, Rouch L (1993) Carbonate cement fabrics displayed: a traverse across the margin of the Bahamas Platform near Lee Stocking Island in Exuma Cays. Mar Geol 110:213–243. doi:10.1016/0025-3227(93)90086-B

    Google Scholar 

  • Wyndham T, McCulloch M, Fallon S, Alibert C (2004) High-resolution coral records of rare earth elements in coastal seawater: biogeochemical cycling and a new environmental proxy. Geochim Cosmochim Acta 68:2067–2080. doi:10.1016/j.gca.2003.11.004

    Google Scholar 

  • Yu K-E, Zhao J-X, Wei G-J, Cheng X-R, Chen T-E, Felis T, Wang P-X, Lui T-S (2005) δ18O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula, northern South China Sea, and their applicability as paleoclimatic indicators. Palaeogeogr Palaeoclimatol Palaeoecol 218:57–73. doi:10.1016/j.palaeo.2004.12.003

    Google Scholar 

  • Zundelevich A, Lazar B, Ilan M (2007) Chemical versus mechanical bioerosion of coral reefs by boring sponges–lessons from Pione cf. vastifica. J Exp Biol 210:91–96. doi:10.1242/jeb.02627

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the staff of the Analytical Electron Microscopy Facility at the Queensland University of Technology (QUT) where all the scanning electron microscopy was carried out. We also thank J. T. Kloprogge and M. Hales from QUT for their assistance with Raman spectroscopy analyses and J. Pandolfi of the University of Queensland for initial aid in identifying coral species. We are grateful to reviewers J. Stolarski and M. Reuter and Editor A. Freiwald for comments that improved the manuscript. The research was funded primarily by QUT and by a QUT Australian Tertiary Network Small Grant to Webb and an Australian Postgraduate Award to Nothdurft. Corals were collected under Marine Parks Permit G03/9787.1 from Great Barrier Reef Marine Parks Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke D. Nothdurft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nothdurft, L.D., Webb, G.E. Earliest diagenesis in scleractinian coral skeletons: implications for palaeoclimate-sensitive geochemical archives. Facies 55, 161–201 (2009). https://doi.org/10.1007/s10347-008-0167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-008-0167-z

Keywords

Navigation