Skip to main content

Advertisement

Log in

A comparative machine learning approach to identify landslide triggering factors in northern Chilean Patagonia

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Worldwide landslides correspond to one of the most dangerous geological events due to their destructive power and unpredictable nature. In the Chilean Patagonia, the SERNAGEOMIN (Chilean Geological Survey Service) has detected 2533 landslide events in the Northern Patagonia (42. 7S, 72. 4W) alone, a small area compared to the whole Chilean Patagonia. However, only 11 evens have known date. Consequently, it is not possible to associate temporal triggers and mechanisms that control such events, resulting in a lack of understanding of the factors that enable landslides. This work aims to detect landslides and identify the main environmental variables (climatic and geomorphological) that explain their occurrence using machine learning methods. We will address the following research questions: 1) How can a temporal landslide dataset be built using Landsat images and Google Earth Engine in Northern Patagonia? 2) Once the landslides and their timing have been detected, what are the main variables that condition the landslide processes? In our work, we developed a temporal dataset of landslides for the northern Patagonia of Chile. We used three machine learning approaches, where it was possible to identify the main environmental variables that allow us to predict their generation. Statistical models show that during the last 19 years, there has been complex interaction between different environmental variables that have influenced the activity of landslides. Climatic indices, indicators of extreme events, have a high incidence in the events’ predictive capacity. However, the most important are those linked to Patagonia’s tectonic context. In particular, the time elapsed after the eruptive event of the Chaitén volcano. Finally, the Liquiñe-Ofqui Fault System’s presence extending throughout the entire north of Patagonia has generated discontinuities at a general level, causing significant geomorphological instability. The study area has a relief in evolution and reactive to climatic conditions. Therefore, we highlight the need to understand better the interaction between geological and climatic processes and the future impact of these natural hazards. We emphasize the importance of analyzing landslide controls, considering both geomorphological variables and sporadic geological events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Climatic data retrieved from: www.explorador.cr2.cl)

References

  • Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC (2018) TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci Data 5(1):170191

    Article  Google Scholar 

  • Achour Y, Pourghasemi HR (2020) How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci Front 11(3):871–883

    Article  Google Scholar 

  • Aguilera F, Honores C, Lemus M, Neira H, Pérez Y, Rojas AJ (2014). Evaluación de los recursos geotérmicos de la Región de Los Lagos. Servicio Nacional de Geología y Minería. Technical report, Servicio Nacional de Geología y Minería

  • Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at Ä°zmir, Turkey. Landslides 9(1):93–106

    Article  Google Scholar 

  • Alfano F, Bonadonna C, Volentik AC, Connor CB, Watt SF, Pyle DM, Connor LJ (2011) Tephra stratigraphy and eruptive volume of the may, 2008, Chaitén eruption, Chile. Bull Volcanol 73(5):613–630

    Article  Google Scholar 

  • Alimohammadlou Y, Najafi A, Yalcin A (2013) Landslide process and impacts: a proposed classification method. CATENA 104:219–232

    Article  Google Scholar 

  • Amatya P, Kirschbaum D, Stanley T (2019) Use of very high-resolution optical data for landslide mapping and susceptibility analysis along the Karnali highway, Nepal. Remote Sens 11(19):2284

    Article  Google Scholar 

  • Archer KJ, Kimes RV (2008) Empirical characterization of random forest variable importance measures. Comput Stat Data Anal 52(4):2249–2260

    Article  Google Scholar 

  • Avila A, Justino F, Wilson A, Bromwich D, Amorim M (2016) Recent precipitation trends, flash floods and landslides in southern Brazil. Environ Res Lett 11(11):114029

    Article  Google Scholar 

  • Ávila Á, Guerrero F, Escobar Y, Justino F (2019) Recent Precipitation Trends and Floods in the Colombian Andes. Water 11(2):379

    Article  Google Scholar 

  • Banerjee A, Chen R, Meadows ME, Singh RB, Mal S, Sengupta D (2020) An analysis of long-term rainfall trends and variability in the Uttarakhand himalaya using google earth engine. Remote Sens 12(4):709

    Article  Google Scholar 

  • Basso-Báez S, Mazzorana B, Ulloa H, Bahamondes D, Ruiz-Villanueva V, Sanhueza D, Iroumé A, Picco L (2020) Unravelling the impacts to the built environment caused by floods in a river heavily perturbed by volcanic eruptions. J S Am Earth Sci 102(August 2019):102655

    Article  Google Scholar 

  • Basu T, Pal S (2019) RS-GIS based morphometrical and geological multi-criteria approach to the landslide susceptibility mapping in Gish River basin, West Bengal, India. Adv Space Res 63(3):1253–1269

    Article  Google Scholar 

  • Bell R, Fort M, Götz J, Bernsteiner H, Andermann C, Etzlstorfer J, Posch E, Gurung N, Gurung S (2021) Major geomorphic events and natural hazards during monsoonal precipitation 2018 in the kali gandaki valley, Nepal himalaya. Geomorphology 372:107451

    Article  Google Scholar 

  • Borga M, Stoffel M, Marchi L, Marra F, Jakob M (2014) Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. J Hydrol 518(PB):194–205

    Article  Google Scholar 

  • Breiman L (2001). Random Forest Machine Learning 45 (5), 32

  • Brown I, Mues C (2012) An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Syst Appl 39(3):3446–3453

    Article  Google Scholar 

  • C3S (2017). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), (date of access), https://cds.climate.copernicus.eu/cdsapp#!/home

  • Cai W, McPhaden MJ, Grimm AM, Rodrigues RR, Taschetto AS, Garreaud RD, Dewitte B, Poveda G, Ham Y-G, Santoso A, Ng B, Anderson W, Wang G, Geng T, Jo H-S, Marengo JA, Alves LM, Osman M, Li S, Wu L, Karamperidou C, Takahashi K, Vera C (2020) Climate impacts of the El Niño-southern oscillation on South America. Nat Rev Earth Environ 1(4):215–231

    Article  Google Scholar 

  • Carlini M, Chelli A, Vescovi P, Artoni A, Clemenzi L, Tellini C, Torelli L (2016) Tectonic control on the development and distribution of large landslides in the northern Apennines (Italy). Geomorphology 253:425–437

    Article  Google Scholar 

  • Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471(1–2):96–113

    Article  Google Scholar 

  • Chang Z, Du Z, Zhang F, Huang F, Chen J, Li W, Guo Z (2020) Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS: Comparisons of Supervised and Unsupervised Machine Learning Models. Remote Sens 12(3):502

    Article  Google Scholar 

  • Cheek, P. J., P. McCullagh, and J. A. Nelder (1990). Generalized Linear Models, 2nd Edn

  • Chen F, Yu B, Li B (2018a) A practical trial of landslide detection from single-temporal Landsat8 images using contour-based proposals and random forest: a case study of national Nepal. Landslides 15(3):453–464

    Article  Google Scholar 

  • Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu A-X, Pei X, Duan Z (2018b) Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci Total Environ 626:1121–1135

    Article  Google Scholar 

  • Chen W, Sun Z, Han J (2019) Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models. Appl Sci (Switzerland) 9(1):171

    Google Scholar 

  • Chen S, Miao Z, Wu L, He Y (2020) Application of an incomplete landslide inventory and one class classifier to earthquake-induced landslide susceptibility mapping. IEEE J Selec Topics Appl Earth Observ Remote Sens 13:1649–1660

    Article  Google Scholar 

  • Couronné R, Probst P, Boulesteix AL (2018) Random forest versus logistic regression: a large-scale benchmark experiment. BMC Bioinform 19(1):1–14

    Article  Google Scholar 

  • Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M, Pepe G, Raso E, Calcaterra D (2020) Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 17(8):1897–1914

    Article  Google Scholar 

  • Dowling CA, Santi PM (2014) Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Nat Hazards 71(1):203–227

    Article  Google Scholar 

  • Duhart P (2003) Las juntas: un prospecto de cu-Pb-Zn (au-Ag) en la franja polimetálica del Cretácico inferior de Chiloé continental. Cordillera Nor-Patagónica, Chile In X CONGRESO GEOLÓGICO CHILENO

    Google Scholar 

  • East AE, Sankey JB (2020) Geomorphic and sedimentary effects of modern climate change: current and anticipated future conditions in the Western United States. Rev Geophys 58(4):0–3

    Article  Google Scholar 

  • Evans SG, Bishop NF, Fidel Smoll L, Valderrama Murillo P, Delaney KB, Oliver-Smith A (2009) A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, cordillera Blanca, Peru in 1962 and 1970. Eng Geol 108(1–2):96–118

    Article  Google Scholar 

  • Fan X, Yunus AP, Scaringi G, Catani F, Siva Subramanian S, Xu Q, Huang R (2021) Rapidly evolving controls of landslides after a strong earthquake and implications for Hazard assessments. Geophys Res Lett 48(1):1–12

    Article  Google Scholar 

  • Fayne JV, Ahamed A, Roberts-Pierel J, Rumsey AC, Kirschbaum D (2019) Automated satellite-based landslide identification product for Nepal. Earth Interact 23(3):1–21

    Article  Google Scholar 

  • Fiorucci F, Ardizzone F, Mondini AC, Viero A, Guzzetti F (2019) Visual interpretation of stereoscopic NDVI satellite images to map rainfall-induced landslides. Landslides 16(1):165–174

    Article  Google Scholar 

  • Friedman J (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

    Article  Google Scholar 

  • Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4):367–378

    Article  Google Scholar 

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations–a new environmental record for monitoring extremes. Sci Data 2(1):150066

    Article  Google Scholar 

  • Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth Sci Rev 162:227–252

    Article  Google Scholar 

  • Gariano SL, Rianna G, Petrucci O, Guzzetti F (2017) Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale. Sci Total Environ 596-597:417–426

    Article  Google Scholar 

  • Garreaud RD (2007) Precipitation and circulation covariability in the extratropics. J Clim 20(18):4789–4797

    Article  Google Scholar 

  • Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large-scale control on the Patagonian climate. J Clim 26(1):215–230

    Article  Google Scholar 

  • Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps–a review. Sci Total Environ 493:1138–1151

    Article  Google Scholar 

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  • Grömping U (2009) Variable importance assessment in regression: linear regression versus random forest. Am Stat 63(4):308–319

    Article  Google Scholar 

  • Guo X, Cui P, Li Y, Ma L, Ge Y, Mahoney WB (2016) Intensity-duration threshold of rainfall-triggered debris flows in the Wenchuan earthquake affected area, China. Geomorphology 253:208–216

    Article  Google Scholar 

  • Gutiérrez-Martín A (2020) A GIS-physically-based emergency methodology for predicting rainfall-induced shallow landslide zonation. Geomorphology 359:107121

    Article  Google Scholar 

  • Handwerger AL, Fielding EJ, Huang MH, Bennett GL, Liang C, Schulz WH (2019a) Widespread initiation, reactivation, and acceleration of landslides in the northern California coast ranges due to extreme rainfall. J Geophys Res Earth Surf 7:1782–1797

    Article  Google Scholar 

  • Handwerger AL, Huang MH, Fielding EJ, Booth AM, Bürgmann R (2019b) A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Sci Rep 9(1):1–12

    Article  Google Scholar 

  • Hapfelmeier A, Hothorn T, Ulm K, Strobl C (2014) A new variable importance measure for random forests with missing data. Stat Comput 24(1):21–34

    Article  Google Scholar 

  • He Q, Shahabi H, Shirzadi A, Li S, Chen W, Wang N, Chai H, Bian H, Ma J, Chen Y, Wang X, Chapi K, Ahmad BB (2019) Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF classifier, and RBF network machine learning algorithms. Sci Total Environ 663:1–15

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Horányi A, Muñoz-Sabater J, Nicola J, Radu R, Schepers D, Simmons A, Soci C, Dee D (2019) Global reanalysis: goodbye ERA-interim, hello ERA5. Meteorol Section ECMWF Newslett 159:17–24

    Google Scholar 

  • Hervé F, Fuentes FJ, Calderón M, Fanning M, Quezada P, Pankhurst R, Rapela C (2017) Ultramafic rocks in the North Patagonian Andes: is their emplacement associated with the Neogene tectonics of the Liquiñe-Ofqui Fault Zone. Andean Geol 44(1):1

    Article  Google Scholar 

  • Hossin M, Sulaiman M (2015) A review on evaluation metrics for data classification evaluations. Int J Data Min Knowl Manag Process 5(2):01–11

    Article  Google Scholar 

  • Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Process Landf 37(1):77–91

    Article  Google Scholar 

  • Huntington JL, Hegewisch KC, Daudert B, Morton CG, Abatzoglou JT, McEvoy DJ, Erickson T (2017a) Climate engine: cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding. Bull Am Meteorol Soc 11:2397–2409

    Article  Google Scholar 

  • Huntington JL, Hegewisch KC, Daudert B, Morton CG, Abatzoglou JT, McEvoy DJ, Erickson T (2017b) Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bull Am Meteorol Soc 11:2397–2410

    Article  Google Scholar 

  • Ilia I, Tsangaratos P (2016) Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides 13(2):379–397

    Article  Google Scholar 

  • Iroumé A, Paredes A, Garbarino M, Morresi D, Batalla RJ (2020) Post-eruption morphological evolution and vegetation dynamics of the Blanco River, southern Chile. J S Am Earth Sci 104(August):102809

    Article  Google Scholar 

  • Jaboyedoff M, Penna I, Pedrazzini A, Baroň I, Crosta GB (2013) An introductory review on gravitational-deformation induced structures, fabrics and modeling. Tectonophysics 605:1–12

    Article  Google Scholar 

  • Jara IA, Moreno PI, Alloway BV, Newnham RM (2019) A 15,400-year long record of vegetation, fire-regime, and climate changes from the northern Patagonian Andes. Quat Sci Rev 226:106005

    Article  Google Scholar 

  • Kim HG, Lee DK, Park C, Ahn Y, Kil S-H, Sung S, Biging GS (2018) Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods. Stoch Env Res Risk A 11:2987–3019

    Article  Google Scholar 

  • Kirschbaum D, Stanley T, Zhou Y (2015) Spatial and temporal analysis of a global landslide catalog. Geomorphology 249:4–15

    Article  Google Scholar 

  • Kjekstad O and Highland L (2009). Economic and Social Impacts of Landslides 30 30.1 Introduction and Scope. pp. 573–587

  • Korup O, Seidemann J, Mohr CH (2019) Increased landslide activity on forested hillslopes following two recent volcanic eruptions in Chile. Nat Geosci 12(4):284–289

    Article  Google Scholar 

  • Kuradusenge M, Kumaran S, Zennaro M (2020) Rainfall-induced landslide prediction using machine learning models: the case of ngororero district, Rwanda. Int J Environ Res Public Health 17(11):1–20

    Article  Google Scholar 

  • Larsen MC, Wieczorek GF, Eaton LS, Morgan BA, Torres-Sierra H (2001) Venezuelan debris flow and flash flood disaster of 1999 studied. Eos 82(47):572–573

    Article  Google Scholar 

  • Lazzari M, Piccarreta M (2018) Landslide disasters triggered by extreme rainfall events: the case of montescaglioso (Basilicata, southern Italy). Geosciences (Switzerland) 8(10):377

    Google Scholar 

  • Lemaître G, Nogueira F, Aridas C (2017) Imbalanced-learn: a Python toolbox to tackle the curse of imbalanced datasets in machine learning. J Mach Learn Res 18(1):559–563

    Google Scholar 

  • León-Muñoz J, Urbina MA, Garreaud R, Iriarte JL (2018) Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Sci Rep 8(1):1330

    Article  Google Scholar 

  • Lever J, Krzywinski M, Altman N (2016) Classification evaluation. Nat Methods 13(8):603–604

    Article  Google Scholar 

  • Lewkowicz AG, Way RG (2019) Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nat Commun 10(1):1–11

    Article  Google Scholar 

  • Li J, Zhang Q, Chen YD, Singh VP (2015) Future joint probability behaviors of precipitation extremes across China: spatiotemporal patterns and implications for flood and drought hazards. Glob Planet Chang 124:107–122

    Article  Google Scholar 

  • Liu XY, Wu J, Zhou ZH (2009) Exploratory undersampling for class-imbalance learning. IEEE Trans Syst Man Cybernet Part B: Cybernet 39(2):539–550

    Article  Google Scholar 

  • Liu S, Wei L, Hu K (2020) Topographical and geological variation of effective rainfall for debris-flow occurrence from a large-scale perspective. Geomorphology 358:107134

    Article  Google Scholar 

  • Ma T, Li C, Lu Z, Wang B (2014) An effective antecedent precipitation model derived from the power-law relationship between landslide occurrence and rainfall level. Geomorphology 216:187–192

    Article  Google Scholar 

  • Major JJ, Lara LE (2013) Overview of Chaitén volcano, Chile, and its 2008-2009 eruption. Andean Geol 40(2):196–215

    Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29(6):687–711

    Article  Google Scholar 

  • Marjanović M, Krautblatter M, Abolmasov B, Durić U, Sandić C, Nikolić V (2018) The rainfall-induced landsliding in Western Serbia: a temporal prediction approach using decision tree technique. Eng Geol 232(February 2017):147–159

    Article  Google Scholar 

  • Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116(1–2):24–36

    Article  Google Scholar 

  • Martini L, Picco L, Iroumé A, Cavalli M (2019) Sediment connectivity changes in an Andean catchment affected by volcanic eruption. Sci Total Environ 692:1209–1222

    Article  Google Scholar 

  • Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B (2020) Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev 207(June):103225

    Article  Google Scholar 

  • Mohan A, Singh AK, Kumar B, and Dwivedi R (2020). Review on remote sensing methods for landslide detection using machine and deep learning. Trans Emerg Telecommun Technol (April), 1–23

  • Moreno PI, Videla J, Valero-Garcés B, Alloway BV, Heusser LE (2018) A continuous record of vegetation, fire-regime and climatic changes in northwestern Patagonia spanning the last 25,000 years. Quat Sci Rev 198:15–36

    Article  Google Scholar 

  • Nhu VH, Mohammadi A, Shahabi H, Ahmad BB, Al-Ansari N, Shirzadi A, Geertsema M, Kress VR, Karimzadeh S, Kamran KV, Chen W, Nguyen H (2020) Landslide detection and susceptibility modeling on Cameron highlands (Malaysia): a comparison between random forest, logistic regression and logistic model tree algorithms. Forests 11(8):1–27

    Article  Google Scholar 

  • Nyman P, Rutherfurd ID, Lane PN, Sheridan GJ (2019) Debris flows in Southeast Australia linked to drought, wildfire, and the El Niño-southern oscillation. Geology 47(5):491–494

    Article  Google Scholar 

  • O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690

    Article  Google Scholar 

  • Oh H-J, Lee S (2017) Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree. Appl Sci 7(10):1000

    Article  Google Scholar 

  • Oppikofer T, Hermanns RL, Redfield TF, Sepúlveda SA, Duhart P, Bascuñán I (2012) Morphologic description of the Punta Cola rock avalanche and associated minor rockslides caused by the 21 April 2007 Aysén earth quake (Patagonia, southern Chile). Revista de la Asociacion Geologica Argentina 69(3):339–353

    Google Scholar 

  • Patton AI, Rathburn SL, Capps DM (2019) Landslide response to climate change in permafrost regions. Geomorphology 340:116–128

    Article  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Müller A, Nothman J, Louppe G, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, and Duchesnay É (2012). Scikit-learn: Machine Learning in Python

  • Pelletier JD, Brad Murray A, Pierce JL, Bierman PR, Breshears DD, Crosby BT, Ellis M, Foufoula-Georgiou E, Heimsath AM, Houser C, Lancaster N, Marani M, Merritts DJ, Moore LJ, Pederson JL, Poulos MJ, Rittenour TM, Rowland JC, Ruggiero P, Ward DJ, Wickert AD, Yager EM (2015) Forecasting the response of Earth’s surface to future climatic and land use changes: a review of methods and research needs. Earth’s Future 3(7):220–251

    Article  Google Scholar 

  • Peres D, Cancelliere A (2018) Modeling impacts of climate change on return period of landslide triggering. J Hydrol 567(September):420–434

    Article  Google Scholar 

  • Pérez-Flores P, Cembrano J, Sánchez-Alfaro P, Veloso E, Arancibia G, Roquer T (2016) Tectonics, magmatism and paleo-fluid distribution in a strike-slip setting: insights from the northern termination of the Liquiñe-Ofqui fault system, Chile. Tectonophysics 680:192–210

    Article  Google Scholar 

  • Peruccacci S, Brunetti MT, Gariano SL, Melillo M, Rossi M, Guzzetti F (2017) Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 290(April):39–57

    Article  Google Scholar 

  • Pierson TC, Major JJ, Amigo Á, Moreno H (2013) Acute sedimentation response to rainfall following the explosive phase of the 2008-2009 eruption of Chaitén volcano, Chile. Bull Volcanol 75(5):723

    Article  Google Scholar 

  • Pourghasemi HR, Teimoori Yansari Z, Panagos P, Pradhan B (2018) Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arab J Geosci 11(9):193

    Article  Google Scholar 

  • Poveda G, Espinoza JC, Zuluaga MD, Solman SA, Garreaud R, van Oevelen PJ (2020) High impact weather events in the Andes. Front Earth Sci 8(May):1–32

    Google Scholar 

  • Ramos-Bernal RN, Vázquez-Jiménez R, Romero-Calcerrada R, Arrogante-Funes P, Novillo CJ (2018) Evaluation of unsupervised change detection methods applied to landslide inventory mapping using ASTER imagery. Remote Sens 10(12):1–24

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180(November 2017):60–91

    Article  Google Scholar 

  • Rong G, Alu S, Li K, Su Y, Zhang J, Zhang Y, Li T (2020) Rainfall Induced Landslide Susceptibility Mapping Based on Bayesian Optimized Random Forest and Gradient Boosting Decision Tree Models–A Case Study of Shuicheng County, China. Water 12(11):3066

    Article  Google Scholar 

  • Sanchez G, Rolland Y, Corsini M, Braucher R, Bourlès D, Arnold M, Aumaître G (2010) Relationships between tectonics, slope instability and climate change: cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps. Geomorphology 117(1–2):1–13

    Article  Google Scholar 

  • Sánchez P, Pérez-Flores P, Arancibia G, Cembrano J, Reich M (2013) Crustal deformation effects on the chemical evolution of geothermal systems: the intra-arc Liquiñe-Ofqui fault system, southern Andes. Int Geol Rev 55(11):1384–1400

    Article  Google Scholar 

  • Segoni S, Piciullo L, Gariano SL (2018) A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15(8):1483–1501

    Article  Google Scholar 

  • Segoni S, Pappafico G, Luti T, Catani F (2020) Landslide susceptibility assessment in complex geological settings: sensitivity to geological information and insights on its parameterization. Landslides 17(10):2443–2453

    Article  Google Scholar 

  • Sepúlveda SA, Petley DN (2015) Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Nat Hazards Earth Syst Sci 15(8):1821–1833

    Article  Google Scholar 

  • Sepúlveda SA, Rebolledo S, Vargas G (2006) Recent catastrophic debris flows in Chile: geological hazard, climatic relationships and human response. Quat Int 158(1):83–95

    Article  Google Scholar 

  • Sepúlveda SA, Serey A, Lara M, Pavez A, Rebolledo S (2010) Landslides induced by the April 2007 Aysén Fjord earthquake, Chilean Patagonia. Landslides 7(4):483–492

    Article  Google Scholar 

  • SERNAGEOMIN (2003). Mapa Geológico de Chile: versión digital. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 75, escala 1: 1.000.000. Technical report, Servicio Nacional de Geología y Minería

  • Sernageomin (2018) Catastro de remociones en masa en la Provincia de Palena, Región de Los Lagos. In: Technical report, Servicio Nacional de Geología y Minería. Chile, Puerto Varas

    Google Scholar 

  • SERNAGEOMIN–BRGM (1995). Carta Metalogénica de la X Región Sur, Informe Registrado IR 95–05. Technical report, Servicio Nacional de Geología y Minería

  • Shi J, Cui L, Wen K, Tian Z, Wei P, Zhang B (2018) Trends in the consecutive days of temperature and precipitation extremes in China during 1961-2015. Environ Res 161(July 2017):381–391

    Article  Google Scholar 

  • Shuster RL, Salcedo DA, Valenzuela L (2002) Overview of catastropic landslide of South America in the twentieth century. In: Evans S, DeGraff J (eds) Catastropich landslides: effects, occurrence, and mechanics, XV edn. Geological Society of America Reviews in Engineering Geology, Boulder, pp 1–34

    Google Scholar 

  • Somos-Valenzuela MA, Oyarzún-Ulloa JE, Fustos-Toribio IJ, Garrido-Urzua N, Chen N (2020) The mudflow disaster at Villa Santa Lucía in Chilean Patagonia: understandings and insights derived from numerical simulation and postevent field surveys. Nat Hazards Earth Syst Sci 20(8):2319–2333

    Article  Google Scholar 

  • Song Y, Niu R, Xu S, Ye R, Peng L, Guo T, Li S, Chen T (2018) Landslide Susceptibility Mapping Based on Weighted Gradient Boosting Decision Tree in Wanzhou Section of the Three Gorges Reservoir Area (China). ISPRS Int J Geo Inf 8(1):4

    Article  Google Scholar 

  • Soto M-V, Sarricolea P, Sepúlveda SA, Cabello M, Ibarra I, Molina C, and Maerker M (2018). Geohazards in the fjords of northern Patagonia, Chile. In Sea Level Rise and Coastal Infrastructure, volume i, pp. 38. InTech

  • Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform 8:25

    Article  Google Scholar 

  • Tang R, Fan X, Scaringi G, Xu Q, van Westen CJ, Ren J, Havenith H-B (2019) Distinctive controls on the distribution of river-damming and non-damming landslides induced by the 2008 Wenchuan earthquake. Bull Eng Geol Environ 6:4075–4093

    Article  Google Scholar 

  • Thépaut J.-N. (2017). Copernicus climate change service (C3S) ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate . Copernicus climate change service climate data store (CDS), (date of access). Advancing Reanalysis

  • Tichavský R, Ballesteros-Cánovas JA, Šilhán K, Tolasz R, Stoffel M (2019) Dry Spells and Extreme Precipitation are The Main Trigger of Landslides in Central Europe. Sci Rep 9(1):14560

    Article  Google Scholar 

  • Trigila A, Iadanza C, Esposito C, Scarascia-Mugnozza G (2015) Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 249:119–136

    Article  Google Scholar 

  • Viale M, Bianchi E, Cara L, Ruiz LE, Villalba R, Pitte P, Masiokas M, Rivera J, Zalazar L (2019) Contrasting climates at both sides of the Andes in Argentina and Chile. Front Environ Sci 7(May):1–15

    Google Scholar 

  • Vorpahl P, Elsenbeer H, Märker M, Schröder B (2012) How can statistical models help to determine driving factors of landslides? Ecol Model 239:27–39

    Article  Google Scholar 

  • Whipple KX (2009) The influence of climate on the tectonic evolution of mountain belts. Nat Geosci 2(2):97–104

    Article  Google Scholar 

  • Wieczorek G, Larsen M, Eaton L, Morgan B, and Blair J (2001). Debris-flow and flooding hazards associated with the December 1999 storm in coastal Venezuela and strategies for mitigation - U.S. Geological Survey open file report 01-144: 40, 3 tables, 2 appendices, 3 plates, 1 CD. Technical report, US Geological Survey

  • Xiao T, Segoni S, Chen L, Yin K, Casagli N (2020) A step beyond landslide susceptibility maps: a simple method to investigate and explain the different outcomes obtained by different approaches. Landslides 17(3):627–640

    Article  Google Scholar 

  • Yan G, Liang S, Gui X, Xie Y, Zhao H (2019) Optimizing landslide susceptibility mapping in the Kongtong District, NW China: comparing the subdivision criteria of factors. Geocarto Int 34(13):1408–1426

    Article  Google Scholar 

  • Yang X, Chen L (2010) Using multi-temporal remote sensor imagery to detect earthquake-triggered landslides. Int J Appl Earth Obs Geoinf 12(6):487–495

    Google Scholar 

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2016) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir region, Saudi Arabia. Landslides 13(5):839–856

    Article  Google Scholar 

  • Yu B, Chen F, Muhammad S (2018) Analysis of satellite-derived landslide at Central Nepal from 2011 to 2016. Environ Earth Sci 77(9):1–12

    Article  Google Scholar 

  • Yu B, Chen F, Xu C (2020) Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015. Comput Geosci 135(June 2019):104388

    Article  Google Scholar 

  • Zhou C, Yin K, Cao Y, Ahmed B, Li Y, Catani F, Pourghasemi HR (2018) Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the three gorges reservoir area, China. Comput Geosci 112(September 2017):23–37

    Article  Google Scholar 

  • Zhou J, Li E, Yang S, Wang M, Shi X, Yao S, Mitri HS (2019) Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Saf Sci 118(May):505–518

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the research unit at the University of La Frontera for their support with the English review. This study was possible thanks to the Chilean National Agency of Research and Development (ANID in Spanish) through the Program of International Cooperation (PCI in Spanish; grant no. PII-180008) and the “Fondecyt Iniciación program (grant no. 11170609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Somos-Valenzuela.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, B., Lizama, E., Somos-Valenzuela, M.A. et al. A comparative machine learning approach to identify landslide triggering factors in northern Chilean Patagonia. Landslides 18, 2767–2784 (2021). https://doi.org/10.1007/s10346-021-01675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-021-01675-9

Keywords

Navigation