Skip to main content
Log in

Numerical analysis of effect of baffle configuration on impact force exerted from rock avalanches

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In mountainous areas, channelized rock avalanches swarm downslope leading to large impact forces on building structures in residential areas. Arrays of rock avalanche baffles are usually installed in front of rigid barriers to attenuate the flow energy of rock avalanches. However, previous studies have not sufficiently addressed the mechanisms of interaction between the rock avalanches and baffles. In addition, empirical design approaches such as debris flow (Tang et al., Quat Int 250:63–73, 2012), rockfall (Spang and Rautenstrauch, 1237–1243, 1988), snow avalanches (Favier et al., 14:3–15, 2012), and rock avalanches (Manzella and Labiouse, Landslides 10:23–36, 2013), which are applied in natural geo-disasters mitigation cannot met construction requirements. This study presents details of numerical modeling using the discrete element method (DEM) to investigate the effect of the configuration of baffles (number and spacing of baffle columns and rows) on the impact force that rock avalanches exert on baffles. The numerical modeling is firstly conducted to provide insights into the flow interaction between rock avalanches and an array of baffles. Then, a modeling analysis is made to investigate the change pattern of the impact force with respect to baffle configurations. The results demonstrate that three crucial influencing factors (baffle row numbers, baffle column spacing, and baffle row spacing) have close relationship with energy dissipation of baffles. Interestingly, it is found that capacity of energy dissipation of baffles increases with increasing baffle row numbers and baffle row spacing, while it decreases with increasing baffle column spacing. The results obtained from this study are useful for facilitating design of baffles against rock avalanches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  • Ai J, Chen JF, Rotter JM, Ooi JY (2011) Assessment of rolling resistance models in discrete element simulations[J]. Powder Technol 206(3):269–282

    Article  Google Scholar 

  • Bi YZ, He SM, Li XP, Wu Y, Xu Q, Ouyang CJ, Su LJ, Wang H (2016a) Geo-engineered buffer capacity of two-layered absorbing system under the impact of rock avalanches based on Discrete Element Method[J]. J Mt Sci 13(5):917–929

    Article  Google Scholar 

  • Bi YZ, He SM, Li XP, Ouyang CJ, Wu Y (2016b) Effects of segregation in binary granular mixture avalanches down inclined chutes impinging on defending structures[J]. Environ Earth Sci 75(3):263

  • Bobrowsky P, Highland L (2013) The landslide handbook-a guide to understanding landslides: a landmark publication for landslide education and preparedness[M]//landslides: global risk preparedness. Springer, Berlin, pp 75–84

    Google Scholar 

  • Bugnion L, McArdell BW, Bartelt P, Wendeler C (2012) Measurements of hillslope debris flow impact pressure on obstacles[J]. Landslides 9(2):179–187

    Article  Google Scholar 

  • Calvetti F, di Prisco C, Vairaktaris E (2016) Dry granular flows impacts on rigid obstacles: DEM evaluation of a design formula for the impact force[J]. Proc Eng 158:290–295

    Article  Google Scholar 

  • Choi CE, Ng CWW, Law RPH et al (2014a) Computational investigation of baffle configuration on impedance of channelized debris flow[J]. Can Geotech J 52(2):182–197

    Article  Google Scholar 

  • Choi CE, Ng CWW, Song D, Kwan JHS, Shiu HYK, Ho KKS, Koo RCH (2014b) Flume investigation of landslide debris–resisting baffles[J]. Can Geotech J 51(5):540–553

    Article  Google Scholar 

  • Cruden DM, Novograd S, Pilot GA et al (1990) Suggested nomenclature for landslides[J]. Bull Int Assoc Eng Geol 41(1):13–16

    Article  Google Scholar 

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies[J]. Geotechnique 29(1):47–65

    Article  Google Scholar 

  • Dai Z, Huang Y, Cheng H, Xu Q (2017) SPH model for fluid–structure interaction and its application to debris flow impact estimation[J]. Landslides 14(3):917–928

    Article  Google Scholar 

  • de Miranda S, Gentilini C, Gottardi G, Govoni L, Mentani A, Ubertini F (2015) Virtual testing of existing semi-rigid rockfall protection barriers[J]. Eng Struct 85:83–94

    Article  Google Scholar 

  • Favier P, Bertrand D, Eckert N et al (2012) Optimal design of snow avalanche passive defence structure using reliability approach to quantify buildings vulnerability[C]//EGU General Assembly Conference Abstracts. 14:3–15

  • Hauksson S, Pagliardi M, Barbolini M, Jóhannesson T (2007) Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles[J]. Cold Reg Sci Technol 49(1):54–63

    Article  Google Scholar 

  • Huang X, Hanley KJ, O'Sullivan C, Kwok CY (2014) Exploring the influence of interparticle friction on critical state behaviour using DEM[J]. Int J Numer Anal Methods Geomech 38(12):1276–1297

    Article  Google Scholar 

  • Hungr O. A (1995) model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Can Geotech J 32(4): 610–623.

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update[J]. Landslides 11(2):167–194

    Article  Google Scholar 

  • Hutchinson JN (2002) Chalk flows from the coastal cliffs of northwest Europe[J]. Rev Eng Geol 15:257–302

    Article  Google Scholar 

  • Itasca, Consulting Group Inc., 2016. PFC3D particle flow code in 3 dimensions. User’s guide. Minneapolis

  • Iwashita K, Oda M (1998) Rolling resistance at contacts in simulation of shear band development by DEM[J]. J Eng Mech 124(3):285–292.

  • Iwashita K, Oda M (2000) Micro-deformation mechanism of shear banding process based on modified distinct element method[J]. Powder Technol 109(1):192–205

    Article  Google Scholar 

  • Jiang YJ, Towhata I (2013) Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J]. Rock Mech Rock Eng 46(4):713–729

    Article  Google Scholar 

  • Kwan JSH, Koo RCH, Ng CWW (2015) Landslide mobility analysis for design of multiple debris-resisting barriers[J]. Can Geotech J 52(9):1345–1359

    Article  Google Scholar 

  • Law RPH, Choi CE, Ng CWW (2015) Discrete-element investigation of influence of granular debris flow baffles on rigid barrier impact[J]. Can Geotech J 53(1):179–185

    Article  Google Scholar 

  • Leonardi A, Wittel FK, Mendoza M, Vetter R, Herrmann HJ (2016) Particle–fluid–structure interaction for debris flow impact on flexible barriers[J]. Comp Aided Civ Inf Eng 31(5):323–333

    Article  Google Scholar 

  • Li XP, Wu Y, He SM et al (2016) Application of the material point method to simulate the post-failure runout processes of the Wangjiayan landslide[J]. Eng Geol 212:1–9

    Article  Google Scholar 

  • Liang H, He S, Lei X, et al (2017) Dynamic process simulation of construction solid waste (CSW) landfill landslide based on SPH considering dilatancy effects[J]. Bull Eng Geol Environ 1–15

  • Mancarella D, Hungr O (2010) Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers[J]. Can Geotech J 47(8):827–841

    Article  Google Scholar 

  • Manzella I, Labiouse V (2013) Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation[J]. Landslides 10(1):23–36

    Article  Google Scholar 

  • Mast CM, Arduino P, Miller GR, Mackenzie-Helnwein P (2014) Avalanche and landslide simulation using the material point method: flow dynamics and force interaction with structures[J]. Comput Geosci 18(5):817–830

    Article  Google Scholar 

  • Ng CWW, Choi CE, Kwan JSH, Koo RCH, Shiu HYK, Ho KKS (2014) Effects of baffle transverse blockage on landslide debris impedance[J]. Proc Earth Planet Sci 9:3–13

    Article  Google Scholar 

  • Ng CWW, Choi CE, Song D, Kwan JHS, Koo RCH, Shiu HYK, Ho KKS (2015) Physical modeling of baffles influence on landslide debris mobility[J]. Landslides 12(1):1–18

    Article  Google Scholar 

  • Ng CWW, Choi CE, Goodwin GR et al (2017) Interaction between dry granular flow and deflectors[J]. Landslides 1–13

  • O’Sullivan C (2011) Particle-based discrete element modeling: geomechanics perspective[J]. Int J Geomech 11(6):449–464

    Article  Google Scholar 

  • Oda M, Iwashita K, Kakiuchi T (1997) Importance of particle rotation in the mechanics of granular materials[J]. Powders Grains 97:207–210

    Google Scholar 

  • Savage S B (1984) The mechanics of rapid granular flows[M]. Advances in applied mechanics. Elsevier, 24:289–366.

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline[J]. J Fluid Mech 199:177–215

    Article  Google Scholar 

  • Spang RM, Rautenstrauch RW (1988) Empirical and mathematical approaches to rockfall protection and their practical applications[C]//5th International Symposium on Landslides. 1237–1243

  • Tang C, Zhu J, Chang M, Ding J, Qi X (2012) An empirical–statistical model for predicting debris-flow runout zones in the Wenchuan earthquake area[J]. Quat Int 250:63–73

    Article  Google Scholar 

  • Wensrich CM, Katterfeld A (2012) Rolling friction as a technique for modelling particle shape in DEM[J]. Powder Technol 217:409–417

    Article  Google Scholar 

  • Xing AG, Xu Q, Gan JJ (2015) On characteristics and dynamic analysis of the Niumian valley rock avalanche triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Environ Earth Sci 73(7):3387–3401

    Article  Google Scholar 

  • Xu Q, Fan XM, Huang RQ, Westen CV (2009) Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west China[J]. Bull Eng Geol Environ 68(3):373–386

    Article  Google Scholar 

  • Zhan W, Fan X, Huang R, Pei X, Xu Q, Li W (2017) Empirical prediction for travel distance of channelized rock avalanches in the Wenchuan earthquake area[J]. Nat Hazards Earth Syst Sci 17(6):833–844

    Article  Google Scholar 

  • Zhang Y, Guo C, Lan H, Zhou N, Yao X (2015) Reactivation mechanism of ancient giant landslides in the tectonically active zone: a case study in Southwest China[J]. Environ Earth Sci 74(2):1719–1729

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all anonymous reviewers for helpful suggestions. The authors also thank Mr. Chen Zheng for conducting part of the laboratory tests.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No.41790433), NSFC-ICIMOD (Grant No. 41661144041), Science and Technology Plan Project of Sichuan Province (2016SZ0067), and Key Research and Development Projects of Sichuan Province (2017SZ0041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SiMing He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Y., Du, Y., He, S. et al. Numerical analysis of effect of baffle configuration on impact force exerted from rock avalanches. Landslides 15, 1029–1043 (2018). https://doi.org/10.1007/s10346-018-0979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-018-0979-z

Keywords

Navigation