Skip to main content
Log in

Comparison of statistical methods and multi-time validation for the determination of the shallow landslide rainfall thresholds

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Shallow landslides are unforeseeable phenomena often resulting in critical conditions in terms of people’s safety and damage. The main purpose of this paper is the comparison of different statistical methods used to determine the rainfall thresholds for the shallow landslide occurrence. Rainfall data over a 46-year period were collected for one rain gauge located in a test area of northwest Italy (Riviera Spezzina; RS). In the RS, intense rainfalls often induce shallow landslides causing damage and sometimes casualties. The rainfall events occurred in the 1967–2006 period were classified as events inducing shallow landslides (SLEs1967–2006) and events that did not trigger shallow landslides (NSLEs1967–2006). Thresholds for various percentiles of SLEs1967–2006 were computed by identifying the lower limit above which shallow landslides occurred. Another set of thresholds, corresponding to different probabilities of occurrence, was determined using SLEs1967–2006 and NSLEs1967–2006. The least-squares linear fit (LSF) and the quantile regression (QR) techniques were employed in the former approach, while the logistic regression (LR) was applied in the latter. The thresholds were validated with the same data used for their definition and with the data recorded in the 2008–2014 period. Contingency tables were created and contingencies and skill scores were computed. The 10% probability threshold obtained using the LR method is characterized by the best values of at least two skill scores for both periods considered; therefore, it may be considered the “best” threshold for the RS. The results of this work can help the choice of the best statistical method to determine the shallow landslide rainfall thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agresti A (2010) Analysis of ordinal categorical data, 2nd edn. John Wiley & Sons, Inc, Hoboken

    Book  Google Scholar 

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265. https://doi.org/10.1016/j.enggeo.2004.01.007

    Article  Google Scholar 

  • Alvarez W, Cocozza T, Wezel FC (1974) Fragmentation of the Alpine orogenic belt by microplate dispersal. Nature 248:309–314

    Article  Google Scholar 

  • ARPAL-CFMI-PC (Agenzia Regionale per la Protezione dell'Ambiente Ligure – Centro Funzionale Meteoidrologico di Protezione Civile della Regione Liguria) (2011) Rapporto di evento meteo idrologico del 25/10/2011

  • ARPAL-CFMI-PC (Agenzia Regionale per la Protezione dell’Ambiente Ligure – Centro Funzionale Meteoidrologico di Protezione Civile della Regione Liguria) (2011) Alluvioni in Liguria, i fattori meteo e gli effetti. Ecoscienza 5(6):6–9

    Google Scholar 

  • Bartelletti C, D’Amato Avanzi G, Galanti Y, Giannecchini R, Mazzali A (2015) Assessing shallow landslide susceptibility by using the SHALSTAB model in Eastern Liguria (Italy). Rend Online Soc Geol Ital 35:17–20. https://doi.org/10.3301/ROL.2015.53

    Google Scholar 

  • Bartelletti C, Giannecchini R, D’Amato Avanzi G, Galanti Y, Barsanti M, Persichillo MG, Bordoni M, Meisina C, Cevasco A, Galve JP (2017a) Analysis of the predisposing factors for different landslide types using the generalized additive model. In: Mikoš M et al (eds) Advancing culture of living with landslides, volume 4, diversity of landslide forms. Springer International Publishing AG, Cham, pp 151–158. https://doi.org/10.1007/978–3–319-53485-5_16

    Google Scholar 

  • Bartelletti C, Giannecchini R, D’Amato Avanzi G, Galanti Y, Mazzali A (2017b) The influence of geological–morphological and land use settings on shallow landslides in the Pogliaschina T. basin (northern Apennines, Italy). J Maps 13(2):142–152. https://doi.org/10.1080/17445647.2017.1279082

    Article  Google Scholar 

  • Baum RL, Godt JW (2010) Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 7:259–272. https://doi.org/10.1007/s10346-009-0177-0

    Article  Google Scholar 

  • Bevington PR, Robinson DK (2002) Data reduction and error analysis for the physical sciences, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Bordoni M, Meisina C, Valentino R, Lu N, Bittelli M, Chersich S (2015a) Hydrological factors affecting rainfall-induced shallow landslides: from the field monitoring to a simplified slope stability analysis. Eng Geol 193:19–37. https://doi.org/10.1016/j.enggeo.2015.04.006

    Article  Google Scholar 

  • Bordoni M, Persichillo MG, Meisina C, Cevasco A, Giannecchini R, D’Amato Avanzi G, Galanti Y, Bartelletti C, Brandolini P, Zizioli D (2015b) Developing and testing a data-driven methodology for shallow landslide susceptibility assessment: preliminary results. Rend Online Soc Geol Ital 35:25–28. https://doi.org/10.3301/ROL.2015.55

    Google Scholar 

  • Brandolini P, Cevasco A, Capolongo D, Pepe G, Lovergine F, Del Monte M (2016) Response of terraced slopes to a very intense rainfall event and relationships with land abandonment: a case study from Cinque Terre (Italy). Land Degrad Dev. https://doi.org/10.1002/ldr.2672

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10:447–458. https://doi.org/10.5194/nhess-10-447-2010

    Article  Google Scholar 

  • Brunetti MT, Peruccacci S, Antronico L, Bartolini D, Deganutti AM, Gariano SL, Iovine G, Luciani S, Luino F, Melillo M, Palladino MR, Parise M, Rossi M, Turconi L, Vennari C, Vessia G, Viero A, Guzzetti F (2015) Catalogue of rainfall events with shallow landslides and new rainfall thresholds in Italy. Eng Geol Soc Territ 2:1575–1579. Springer, Champions. https://doi.org/10.1007/978-3-319-09057-3_280

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geogr Ann Ser A Phys Geogr 62(1–2):23–27. https://doi.org/10.2307/520449

    Google Scholar 

  • Calvello M, d’Orsi RN, Piciullo L, Paes N, Magalhaes M, Lacerda WA (2015) The Rio de Janeiro early warning system for rainfall-induced landslides: analysis of performance for the years 2010–2013. Int J Disaster Risk Reduct 12:3–15. https://doi.org/10.1016/j.ijdrr.2014.10.005

    Article  Google Scholar 

  • Cannon SH, Ellen SD (1988) Rainfall that resulted in abundant debris flows activity during the storm. In: Ellen SD, Wieczorek GF (eds) Landslides, floods, and marine effects of the storm of January 3–5, 1982, in the S. Francisco Bay Region, California. United States Geological Survey Professional Paper 1434, pp 27–33

  • Cannon SH, Gartner JE, Wilson RC, Bowers JC, Laber JL (2008) Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology 96:250–269. https://doi.org/10.1016/j.geomorph.2007.03.019

    Article  Google Scholar 

  • Caporali E, Chiarello V, Rossi G (2014) Regional frequency analysis of extreme rainfall events, Tuscany (Italy). Am Geophys Union H41A:769–769

    Google Scholar 

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102:164–177. https://doi.org/10.1016/j.enggeo.2008.03.016

    Article  Google Scholar 

  • Cassola F, Ferrari F, Mazzino A, Miglietta MM (2016) The role of the sea on the flash floods events over Liguria (northwestern Italy). Geophys Res Lett 43(7):3534–3542. https://doi.org/10.1002/2016GL068265

    Article  Google Scholar 

  • Cevasco A, Brandolini P (2015) Rapid debris volume estimation by LiDAR data derived DEMs: applications to the 25 October 2011 debris flood event at Vernazza (Cinque Terre, Italy). Rend Online Soc Geol Ital 35:62–65. https://doi.org/10.3301/ROL.2015.64

    Google Scholar 

  • Cevasco A, Robbiano A, Sacchini A, Vincenzi E (2008) Hydrological thresholds for triggering shallow landslides in the area of the Municipality of Genoa: the case study of the Bisagno Valley. Rend Online Soc Geol Ital 3(1):212–213

    Google Scholar 

  • Cevasco A, Pepe G, Brandolini P (2012) Shallow landslides induced by heavy rainfall on terraced slopes: the case study of the October, 25, 2011 event in the Vernazza catchment (Cinque Terre, NW Italy). Rend Online Soc Geol Ital 21:384–386

    Google Scholar 

  • Cevasco A, Brandolini P, Scopesi C, Rellini I (2013a) Relationships between geo-hydrological processes induced by heavy rainfall and land-use: the case of 25 October 2011 in the Vernazza catchment (Cinque Terre, NW Italy). J Maps 9:289–298. https://doi.org/10.1080/17445647.2013.780188

    Article  Google Scholar 

  • Cevasco A, Pepe G, Brandolini P (2013b) Geotechnical and stratigraphic aspects of shallow landslides at Cinque Terre (Liguria, Italy). Rend Online Soc Geol Ital 24:52–54

    Google Scholar 

  • Cevasco A, Pepe G, Brandolini P (2014) The influences of geological and land use settings on shallow landslides triggered by an intense rainfall event in a coastal terraced environment. Bull Eng Geol Environ 73:859–875. https://doi.org/10.1007/s10064-013-0544-x

    Article  Google Scholar 

  • Cevasco A, Diodato N, Revellino P, Fiorillo F, Grelle G, Guadagno FM (2015) Storminess and geo-hydrological events affecting small coastal basins in a terraced Mediterranean environment. Sci Total Environ 532:208–219. https://doi.org/10.1016/j.scitotenv.2015.06.017

    Article  Google Scholar 

  • Cevasco A, Pepe G, D’Amato Avanzi G, Giannecchini R (2017) Preliminary analysis of the November 10, 2014 rainstorm and related landslides in the lower Lavagna Valley (Eastern Liguria). Ital J Eng Geol Environ Special Issue 2017:5–15. https://doi.org/10.4408/IJEGE.2017-01.S-01

    Google Scholar 

  • CFRT (Centro Funzionale Regione Toscana) (2011) Report evento meteo-idrologico del giorno 25 ottobre 2011 - Focus sul bacino toscano del Fiume Magra. Regione Toscana – Servizio Idrologico Regionale

  • Chen C-l (1983) Rainfall intensity–duration–frequency formulas. J Hydraul Eng 109:1603–1621

    Article  Google Scholar 

  • Chen H, Wang J (2014) Regression analyses for the minimum intensity–duration conditions of continuous rainfall for mudflows triggering in Yan’an, northern Shaanxi (China). Bull Eng Geol Environ 73:917–928. https://doi.org/10.1007/s10064-013-0567-3

    Article  Google Scholar 

  • Chleborad AF, Baum RL, Godt JW, Powers PS (2008) A prototype system for forecasting landslides in the Seattle, Washington, area. Rev Eng Geol 20:103–120. https://doi.org/10.1130/2008.4020(06)

    Google Scholar 

  • D’Amato Avanzi G, Giannecchini R, Puccinelli A (2004) The influence of the geological and geomorphological settings on shallow landslides. An example in a temperate climate environment: the June 19, 1996 event in the northwestern Tuscany (Italy). Eng Geol 73(3–4):215–228. https://doi.org/10.1016/j.enggeo.2004.01.005

    Article  Google Scholar 

  • D’Amato Avanzi G, Galanti Y, Giannecchini R, Lo Presti D, Puccinelli A (2013a) Estimation of soil properties of shallow landslide source areas by dynamic penetration tests: first outcomes from Northern Tuscany (Italy). Bull Eng Geol Environ 72:609–624. https://doi.org/10.1007/s10064-013-0535-y

    Article  Google Scholar 

  • D’Amato Avanzi G, Galanti Y, Giannecchini R, Mazzali A, Saulle G (2013b) Remarks on the 25 October 2011 rainstorm in Eastern Liguria and Northwestern Tuscany (Italy) and the related landslides. Rend Online Soc Geol Ital 24:76–78

    Google Scholar 

  • D’Amato Avanzi G, Galanti Y, Giannecchini R, Puccinelli A (2013c) Fragility of territory and infrastructures resulting from rainstorms in Northern Tuscany (Italy). In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, vol 6. Springer, Berlin Heidelberg, pp 239–246. https://doi.org/10.1007/978-3-642-31319-6_33

    Chapter  Google Scholar 

  • D’Amato Avanzi G, Galanti Y, Giannecchini R, Bartelletti C (2015) Shallow landslides triggered by the 25 October 2011 extreme rainfall in Eastern Liguria (Italy). In: Lollino G et al (eds) Engineering geology for society and territory, vol 2. Springer, Cham, pp 515–519. https://doi.org/10.1007/978–3–319-09057-3_85

    Chapter  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874

    Article  Google Scholar 

  • Frattini P, Crosta G, Sosio R (2009) Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides. Hydrol Process 23:1444–1460. https://doi.org/10.1002/hyp.7269

    Article  Google Scholar 

  • Galanti Y, Giannecchini R, Barsanti M (2016a) Comparison of statistical techniques for shallow landslide rainfall thresholds definition: a case study in Eastern Liguria (Italy). In: Aversa S et al (eds) Landslides and engineered slopes. Experience, theory and practice. CRC Press, Boca Raton, pp 951–958. https://doi.org/10.1201/b21520-112

    Google Scholar 

  • Galanti Y, Giannecchini R, D’Amato Avanzi G, Barsanti M, Benvenuto G (2016b) Rainfall thresholds for triggering shallow landslides in Vara Valley. In: Aversa S et al (eds) Landslides and engineered slopes. Experience, theory and practice. CRC Press, Boca Raton, pp 943–950. https://doi.org/10.1201/b21520-111

    Google Scholar 

  • Galanti Y, Barsanti M, Giannecchini R, D’Amato Avanzi G, Benvenuto G (2017) Statistical methods for the assessment of rainfall thresholds for triggering shallow landslides: a case study. In: Mikoš M et al (eds) Advancing culture of living with landslides, volume 4, diversity of landslide forms. Springer International Publishing AG, Cham, pp 429–436. https://doi.org/10.1007/978–3–319-53485-5_51

    Google Scholar 

  • Galve JP, Cevasco A, Brandolini P, Soldati M (2015) Assessment of shallow landslide risk mitigation measures based on land use planning through probabilistic modelling. Landslides 12:101–114. https://doi.org/10.1007/s10346-014-0478-9

    Article  Google Scholar 

  • Galve JP, Cevasco A, Brandolini P, Piacentini D, Azañon JM, Notti D, Soldati M (2016) Cost-based analysis of mitigation measures for shallow-landslide risk reduction strategies. Eng Geol 213:142–157. https://doi.org/10.1016/j.enggeo.2016.09.002

    Article  Google Scholar 

  • Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 228:653–665. https://doi.org/10.1016/j.geomorph.2014.10.019

    Article  Google Scholar 

  • Giammarino S, Giglia G, Capponi G, Crispini L, Piazza M (2002) Carta geologica della Liguria (scala 1:200,000). Litografia Artistica Cartografica, Florence

    Google Scholar 

  • Giannecchini R (2006) Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy). Nat Hazards Earth Syst Sci 6:357–364. https://doi.org/10.5194/nhess-6-357-2006

    Article  Google Scholar 

  • Giannecchini R, D’Amato Avanzi G (2012) Historical research as a tool in estimating the flood/landslide hazard in a typical small alpine-like area: the example of the Versilia River basin (Apuan Alps, Italy). J Phys Chem Earth 49:32–43. https://doi.org/10.1016/j.pce.2011.12.005

    Article  Google Scholar 

  • Giannecchini R, Galanti Y, D’Amato Avanzi G (2012) Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy). Nat Hazards Earth Syst Sci 12:829–842. https://doi.org/10.5194/nhess-12-829-2012

    Article  Google Scholar 

  • Giannecchini R, Galanti Y, Barsanti M (2015) Rainfall intensity-duration thresholds for triggering shallow landslides in the Eastern Ligurian Riviera (Italy). In: Lollino G et al (eds) Engineering geology for society and territory, vol 2. Springer, Cham, pp 1581–1584. https://doi.org/10.1007/978–3–319-09057-3_281

    Chapter  Google Scholar 

  • Giannecchini R, Galanti Y, D’Amato Avanzi G, Barsanti M (2016) Probabilistic rainfall thresholds for triggering debris flows in a human-modified landscape. Geomorphology 257:94–107. https://doi.org/10.1016/j.geomorph.2015.12.012

    Article  Google Scholar 

  • Godt JW, Baum RL, Chleborad AF (2006) Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surf Process Landf 31:97–110. https://doi.org/10.1002/esp.1237

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98:239–267. https://doi.org/10.1007/s00703-007-0262-7

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. https://doi.org/10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Hanssen AW, Kuipers WJA (1965) On the relationship between the frequency of rain and various meteorological parameters. 81. Koninklijk Nederlands Meteorologisch Institut, Meded. Verhand

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910. https://doi.org/10.1029/2000WR900090

    Article  Google Scholar 

  • Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology 54:137–156. https://doi.org/10.1016/S0169-555X(02)00339-2

    Article  Google Scholar 

  • Kao S-C, Ganguly AR (2011) Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios. J Geophys Res 116(D16119):1–14. https://doi.org/10.1029/2010JD015529

    Google Scholar 

  • Lagomarsino D, Segoni S, Rosi A, Rossi G, Battistini A, Catani F, Casagli N (2015) Quantitative comparison between two different methodologies to define rainfall thresholds for landslide forecasting. Nat Hazards Earth Syst Sci 15:2413–2423. https://doi.org/10.5194/nhess-15-2413-2015

    Article  Google Scholar 

  • Larsen MC, Simon A (1993) A rainfall intensity–duration threshold for landslides in a humid–tropical environment, Puerto Rico. Geogr Ann 75A(1–2):13–23. https://doi.org/10.2307/521049

    Article  Google Scholar 

  • Martelloni G, Segoni S, Fanti R, Catani F (2012) Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 9:485–495. https://doi.org/10.1007/s10346-011-0308-2

    Article  Google Scholar 

  • Mathew J, Babu DG, Kundu S, Kumar KV, Pant CC (2014) Integrating intensity–duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India. Landslides 11:575–588. https://doi.org/10.1007/s10346-013-0408-2

    Article  Google Scholar 

  • Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2015) An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 12:311–320. https://doi.org/10.1007/s10346-014-0471-3

    Article  Google Scholar 

  • Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2016) Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides 13:165–172. https://doi.org/10.1007/s10346-015-0630-1

    Article  Google Scholar 

  • Menard SW (2001) Applied logistic regression analysis. Sage University Papers Series on Quantitative Applications in the Social Sciences 07–106, 2nd edn. Sage Publication Inc., Thousand Oaks

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control of shallow landsliding. Water Resour Res 30:1153–1171. https://doi.org/10.1029/93WR02979

    Article  Google Scholar 

  • Pedemonte R (2005) Contributo alla classificazione dei climi della Liguria. Distribuzione geografica delle precipitazioni annue – IV parte. Rivista Ligure di Meteorologia 16 (anno V). Società Meteorologica Italiana – Sezione Liguria

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the K¨oppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Persichillo MG, Bordoni M, Meisina C, Bartelletti C, Barsanti M, Giannecchini R, D’Amato Avanzi G, Galanti Y, Cevasco A, Brandolini P, Galve JP (2016) Shallow landslides susceptibility assessment in different environments. Geomat Nat Haz Risk. https://doi.org/10.1080/19475705.2016.1265011

  • Peruccacci S, Brunetti MT, Luciani S, Vennari C, Guzzetti F (2012) Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 139–140:79–90. https://doi.org/10.1016/j.geomorph.2011.10.005

    Article  Google Scholar 

  • Peruccacci S, Brunetti MT, Gariano SL, Melillo M, Rossi M, Guzzetti F (2017) Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 290:39–57. https://doi.org/10.1016/j.geomorph.2017.03.031

    Article  Google Scholar 

  • Piciullo L, Gariano SL, Melillo M, Brunetti MT, Peruccacci S, Guzzetti F, Calvello M (2017) Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides 14:995–1008. https://doi.org/10.1007/s10346-016-0750-2

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. In: R foundation for statistical computing, Vienna URL https://www.R-project.org

  • Rosi A, Lagomarsino D, Rossi G, Segoni S, Battistini A, Casagli N (2015) Updating EWS rainfall thresholds for the triggering of landslides. Nat Hazards 78:297–308. https://doi.org/10.1007/s11069-015-1717-7

    Article  Google Scholar 

  • Rossi M, Luciani S, Valigi D, Kirschbaum D, Brunetti MT, Peruccacci S, Guzzetti F (2017) Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data. Geomorphology 285:16–27. https://doi.org/10.1016/j.geomorph.2017.02.001

    Article  Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity–duration thresholds in Japan. Geomorphology 118:167–175. https://doi.org/10.1016/j.geomorph.2009.12.016

    Article  Google Scholar 

  • Segoni S, Rosi A, Rossi G, Catani F, Casagli N (2014a) Analysing the relationship between rainfalls and landslides to define a mosaic of triggering thresholds for regional-scale warning systems. Nat Hazards Earth Syst Sci 14:2637–2648. https://doi.org/10.5194/nhess-14-2637-2014

    Article  Google Scholar 

  • Segoni S, Rossi G, Rosi A, Catani F (2014b) Landslides triggered by rainfall: a semi-automated procedure to define consistent intensity–duration thresholds. Comput Geosci 63:123–131. https://doi.org/10.1016/j.cageo.2013.10.009

    Article  Google Scholar 

  • Segoni S, Battistini A, Rossi G, Rosi A, Logomarsino D, Catani F, Moretti S, Casagli N (2015) Technical note: an operational landslide early warning system at regional scale based on space–time-variable rainfall thresholds. Nat Hazards Earth Syst Sci 15:853–861. https://doi.org/10.5194/nhess-15-853-2015

    Article  Google Scholar 

  • Staley DM, Kean JW, Cannon SH, Schmidt KM, Laber JL (2013) Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides 10:547–562. https://doi.org/10.1007/s10346-012-0341-9

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293

    Article  Google Scholar 

  • Terlien MTJ (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ Geol 35:124–130. https://doi.org/10.1007/s002540050299

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick ØB (2013) Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Nat Hazards 66:707–730. https://doi.org/10.1007/s11069-012-0510-0

    Article  Google Scholar 

  • Van Delden A (2001) The synoptic setting of thunderstorms in Western Europe. Atmos Res 56:89–110. https://doi.org/10.1016/S0169-8095(00)00092-2

    Article  Google Scholar 

  • Vennari C, Gariano SL, Antronico L, Brunetti MT, Iovine G, Peruccacci S, Terranova O, Guzzetti F (2014) Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Nat Hazards Earth Syst Sci 14:317–330. https://doi.org/10.5194/nhess-14-317-2014

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Agenzia Regionale per la Protezione dell’Ambiente Ligure (ARPAL) for giving us the rainfall data. We also thank the anonymous reviewer, whose comments and suggestions greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Galanti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galanti, Y., Barsanti, M., Cevasco, A. et al. Comparison of statistical methods and multi-time validation for the determination of the shallow landslide rainfall thresholds. Landslides 15, 937–952 (2018). https://doi.org/10.1007/s10346-017-0919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-017-0919-3

Keywords

Navigation