Skip to main content
Log in

Geometric and kinematic characterization of landslides affecting urban areas: the Lungro case study (Calabria, Southern Italy)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The geometric and kinematic characterization of landslides affecting urban areas is a challenging goal that is routinely pursued via geological/geomorphological method and monitoring of ground displacements achieved by geotechnical and, more recently, advanced differential interferometric synthetic aperture radar (A-DInSAR) data. Although the integration of all the above-mentioned methods should be planned a priori to be more effective, datasets resulting from the independent use of these different methods are commonly available, thus making crucial the need for their standardized a posteriori integration. In this regard, the present paper aims to provide a contribution by introducing a procedure that, taking into account the specific limits of geological/geomorphological analyses and deep/surface ground displacement monitoring via geotechnical and A-DInSAR data, allows the a posteriori integration of the results by exploiting their complementarity for landslide characterization. The approach was tested in the urban area of Lungro village (Calabria region, southern Italy), which is characterized by complex geological/geomorphological settings, widespread landslides and peculiar urban fabric. In spite of the different level of information preliminarily available for each landslide as result of the independent use of the three methods, the implementation of the proposed procedure allowed a better understanding and typifying of the geometry and kinematics of 50 landslides. This provided part of the essential background for geotechnical landslide models to be used for slope stability analysis within landslide risk mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abolmasov B, Milenković S, Marjanović M, Durić U, Jelisavac B (2015) A geotechnical model of the Umka landslide with reference to landslides in weathered Neogene marls in Serbia. Landslides 12:689–702

    Article  Google Scholar 

  • Antolini F, Tofani V, Del Ventisette C, Luzi G, Casagli N, Moretti S (2013) SAR interferometry for landslides risk assessment at local scale: the case study of Castagnola (Northern Apennines, Italy). In: Margottini C et al (eds) Landslide science and practice, volume 2: early warning, instrumentation and monitoring. Springer, Berlin, pp 407–414

    Chapter  Google Scholar 

  • Antronico L, Borrelli L, Peduto D, Fornaro G, Gullà G, Paglia L, Zeni G (2013) Conventional and innovative techniques for the monitoring of displacements in landslide affected area. In: Margottini C et al (eds) Landslide science and practice, volume 2: early warning, instrumentation and monitoring. Springer, Berlin, pp 125–131

    Chapter  Google Scholar 

  • Antronico L, Borrelli L, Coscarelli R, Gullà G (2015) Time evolution of landslide damages to buildings: the case study of Lungro (Calabria, southern Italy). Bull Eng Geol Environ 74:47–59

    Article  Google Scholar 

  • Baldi P, Cenni N, Fabris M, Zanutta A (2008) Kinematics of a landslide derived from archival photogrammetry and GPS data. Geomorphology 102:435–444

    Article  Google Scholar 

  • Barla G, Antolini F, Barla M, Mensi E, Piovano G (2010) Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng Geol 116:218–235

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383

    Article  Google Scholar 

  • Bhandari RK, Cascini L, Peduto D (2013). Landslide instrumentation and monitoring. In: Landslide science and practice: early warning, instrumentation and monitoring. Proc. of 2nd World Landslide Forum, WLF 2011; Rome; Italy; 3 October 2011–9 October 2011, Vol. 2, 2013, Pages 1–2, ISBN 978-3-642-31444-5

  • Bianchini S, Herrera G, Mateos RM, Notti D, Garcia I, Mora O, Moretti S (2013) Landslide activity maps generation by means of persistent scatterer interferometry. Remote Sens 5:6198–6222

    Article  Google Scholar 

  • Bonci L, Calcaterra S, Cesi C, Gambino P, Gullà G, Niceforo D, Merli K, Sorriso-Valvo M (2010) Displacements on a slope affected by deep-seated Gravitational Slope Deformation: Greci slope (Lago, Calabria, Italy). Geogr Fis Din Quat 33:141–153

    Google Scholar 

  • Booth AM, Dehls J, Eiken T, Fischer L, Hermanns RL, Oppikofer T (2015) Integrating diverse geologic and geodetic observations to determine failure mechanisms and deformation rates across a large bedrock landslide complex: the Osmundneset landslide, Sogn og Fjordane, Norway. Landlsides 12:745–756

    Google Scholar 

  • Borrelli L, Antronico L, Gullà G, Sorriso-Valvo GM (2014) Geology, geomorphology and dynamics of the 15 February 2010 Maierato landslide (Calabria, Italy). Geomorphology 208:50–73

    Article  Google Scholar 

  • Bovenga F, Nitti DO, Fornaro G, Radicioni F, Stoppini A, Brigante R (2013) Using C/X-band SAR interferometry and GNSS measurements for the Assisi landslide analysis. Int J Rem Sen 34:4083–4104

    Article  Google Scholar 

  • Calcaterra S, Cesi C, Di Maio C, Gambino P, Merli K, Vallario M, Vassallo R (2012) Surface displacements of two landslides evaluated by GPS and inclinometer systems: a case study in Southern Appennines, Italy. Nat Hazards 61:257–266

    Article  Google Scholar 

  • Calò F, Calcaterra D, Iodice A, Parise M, Ramondini M (2012) Assessing the activity of a large landslide in southern Italy by ground-monitoring and SAR interferometric techniques. Int J Remote Sens 33:3512–3530

    Article  Google Scholar 

  • Carter M, Bentley SP (1985) The geometry of slip surfaces beneath landslides: predictions from surface measurements. Can Geotech J 22:234–238

    Article  Google Scholar 

  • Cascini L, Gullà G, Sorbino G (2006) Groundwater modelling of a weathered gneissic cover. Can Geotech J 43:1153–1166

    Article  Google Scholar 

  • Cascini L, Fornaro G, Peduto D (2009) Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide affected areas. ISPRS J Photogramm Remote Sens 64:598–611

    Article  Google Scholar 

  • Cascini L, Fornaro G, Peduto D (2010) Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng Geol 112:29–42

    Article  Google Scholar 

  • Cascini L, Peduto D, Pisciotta G, Arena L, Ferlisi S, Fornaro G (2013a) The combination of DInSAR and facility damage data for the updating of slow-moving landslide inventory maps at medium scale. Nat Hazards Earth Syst Sci 13:1527–1549

    Article  Google Scholar 

  • Cascini L, Peduto D, Reale D, Arena L, Ferlisi S, Verde S, Fornaro G (2013b) Detection and monitoring of facilities exposed to subsidence phenomena via past and current generation SAR sensors. J Geophys Eng 10:1–14

    Article  Google Scholar 

  • Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005) Landslide hazard and risk mapping at catchment scale 2005 Arno River basin. Landslides 2:329–342

    Article  Google Scholar 

  • Ciampalini A, Cigna F, Del Ventisette C, Moretti S, Liguori V, Casagli N (2012) Integrated geomorphological mapping in the north-western sector of Agrigento (Italy). JOM 8:136–145

    Article  Google Scholar 

  • Cigna F, Bianchini S, Casagli N (2013) How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach. Landslides 10:267–283

    Article  Google Scholar 

  • Colesanti C, Wasowski J (2006) Investigating landslides with spaceborne Synthetic Aperture Radar (SAR) interferometry. Eng Geol 88:173–199

    Article  Google Scholar 

  • Costantini M, Falco S, Malvarosa F, Minati F (2008) A new method for identification and analysis of persistent scatterers in series of SAR images. IEEE International Geoscience & Remote Sensing Symposium, July 6–11, 2008, Boston, Massachusetts, USA, pp 449–452

  • Crosetto M, Biescas E, Duro J (2008) Generation of advanced ERS and Envisat interferometric SAR products using the stable point network technique. Photogramm Eng Remote Sens 4:443–450

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Landslides: investigation and mitigation, edited by: Turner, A. K. and Schuster, R. L., Washington DC, Transportation Research Board, National Academy of Sciences, Special Report 247, pp 36–75

  • Del Ventisette C, Ciampalini A, Manunta M, Calò F, Paglia L, Ardizzone F, Mondini AC, Reichenbach P, Mateos RM, Bianchini S, Garcia I, Füsi B, Deák ZV, Rádi K, Graniczny M, Kowalski Z, Piatkowska A, Przylucka M, Retzo H, Strozzi T, Colombo D, Mora O, Sánchez F, Herrera G, Moretti S, Casagli N, Guzzetti F (2013) Exploitation of large archives of ERS and ENVISAT C-band SAR data to characterize ground deformations. Remote Sens 5:3896–3917

    Article  Google Scholar 

  • Di Maio C, Vassallo R, Vallario M (2013) Plastic and viscous shear displacements of a deep and very slow landslide in stiff clay formation. Eng Geol 162:53–66

    Article  Google Scholar 

  • Du J, Yin K, Lacasse S (2013) Displacement prediction in colluvial landslides, Three Gorges Reservoir, China. Landslides 10:203–218

    Article  Google Scholar 

  • Eberhardt E (2008) Twenty-ninth Canadian Geotechnical Colloquium: the role of advanced numerical methods and geotechnical field measurements in understanding complex deep-seated rock slope failure mechanisms. Can Geotech J 45:484–510

    Article  Google Scholar 

  • Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88:200–217

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning, Commentary. Eng Geol 102:85–98

    Article  Google Scholar 

  • Ferlisi S, Peduto D, Gullà G, Nicodemo G, Borrelli L, Fornaro G (2014) The use of DInSAR data for the analysis of building damage induced by slow-moving landslides. In: G. Lollino et al. (eds.), Engineering Geology for Society and Territory, Springer International Publishing Switzerland 2:1835–1839. doi: 10.1007/978-3-319-09057-3

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39:8–20

    Article  Google Scholar 

  • Fornaro G, Pauciullo A, Serafino F (2009a) Deformation monitoring over large areas with multipass differential SAR interferometry: a new approach based on the use of spatial differences. Int J Remote Sens 30:1455–1478

    Article  Google Scholar 

  • Fornaro G, Reale D, Serafino F (2009b) Four-dimensional SAR imaging for height estimation and monitoring of single and double scatterers. IEEE Trans Geosci Remote Sens 47:224–237

    Article  Google Scholar 

  • Fornaro G, Nitti DO, Nutricato R, Bovenga F, Peduto D, Cascini L (2013) Technological and methodological advances in the application of spaceborne DInSAR for landslide monitoring. In Landslide Science and Practice Proceedings of The Second World Landslide Forum, 3–9 October 2011, Rome. (pp 379–384) Springer Berlin Heidelberg

  • Fornaro G, Verde S, Reale D, Pauciullo A (2015) CAESAR: an approach based on covariance matrix decomposition to improve multibaseline/multitemporal interferometric SAR processing. IEEE Trans Geosci Remote Sens 53(4):2050–2065

    Article  Google Scholar 

  • François B, Tacher L, Bonnard C, Laloui L, Triguero V (2007) Numerical modelling of the hydrogeological and geomechanical behaviour of a large slope movement: the Triesenberg landslide (Lichtenstein). Can Geotech J 44:840–857

    Article  Google Scholar 

  • Fukuoka M (1980) Static and dynamic earth pressures on retaining walls. Proc. of the 3th Australia-New Zealand Conference of Geomechanics, Wellington, New Zealand

  • Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49:3460–3470

    Article  Google Scholar 

  • Gili JA, Corominas J, Ruis J (2000) Using Global Positioning System techniques in landslide monitoring. Eng Geol 55:167–192

    Article  Google Scholar 

  • Grana V, Tommasi P (2014) A deep-seated slow movement controlled by structural setting in marly formations of Central Italy. Landslides 11:195–212

    Article  Google Scholar 

  • Greco R, Sorriso-Valvo M, Catalano E (2007) Logistic regression analysis in the evaluation of mass-movements susceptibility—the Aspromonte case study, Calabria. Eng Geol 89:47–66

    Article  Google Scholar 

  • Gullà G (2014) Field monitoring in sample sites: hydrological response of slopes with reference to widespread landslide events. Proc Earth Planet Sci 9:44–53

    Article  Google Scholar 

  • Gullà G, Niceforo D, Bonci L, Calcaterra S, Cesi C, Gambino P (2004) Surface movements of a landslide involving weathered and degraded rocks. Proc. of the 15th Southeast Asian Geotechnical Conference, November 22–26, 2004 (15th SEAGC), Bangkok, Thailand, Volume 1, 375–378

  • Gullà G, Antronico L, Borrelli L, Cilento M, Aceto L, Scionti V (2006) Relazione Finale -Parti I-II-III e Cartografia. Convenzione di consulenza tecnico-scientifica Esecuzione di un programma di studi ed indagini finalizzati alla individuazione delle cause che hanno determinato la gravissima situazione di dissesto idrogeologico nel territorio del Comune di Lungro (CS). CNR-IRPI, OPCM n. 3460/2005. Unpublished report, (in Italian)

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for and old problem. Earth-Sci Rev 112:42–66

    Article  Google Scholar 

  • Herrera G, Gutierrez F, Garcıa-Davalillo JC, Guerrero J, Notti D, Galve JP, Fernandez-Merodo JA, Cooksley G (2013) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens Environ 128:31–43

    Article  Google Scholar 

  • Iannace A, Bonari G, D’Errico M, Mazzoli S, Perrone V, Vitale S (2005) Structural setting and tectonic evolution of the Apennine Units of northern Calabria. CR Geoscience 337:1541–1550

    Article  Google Scholar 

  • Kim HW (2008) Development of wireless sensor node for landslide detection. In: Landslides and engineered slopes, Chen et al. (eds), Taylor & Francis Group, London, ISBN 978-0-415-41196-7, 1183–1187

  • Komac M, Holley R, Mahapatra P, van der Marel H, Bavec M (2015) Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides 12:241–257

    Article  Google Scholar 

  • Kumsar H, Aydan O, Tano H, Celik SB, Ulusay R (2015) An integrated geomechanical investigation, multi-parameter monitoring and analyses of Babadag˘-Gu¨ndog˘du creep-like landslide. Rock Mech Rock Eng. doi:10.1007/s00603-015-0826-7

    Google Scholar 

  • Laribi A, Walstra J, Ougrine M, Seridi A, Dechemi N (2015) Use of digital photogrammetry for the study of unstable slopes in urban areas: case study of the El Biar landslide, Algiers. Eng Geol 187:73–83

    Article  Google Scholar 

  • Lu P, Catani F, Tofani V, Casagli N (2014) Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry. Landslides 11:685–696

    Article  Google Scholar 

  • Maiorano SC, Borrelli L, Moraci N, Gullà G (2015) Numerical modelling to calibrate the geotechnical model of a deep-seated landslide in weathered crystalline rocks: Acri (Calabria, Italy). G. Lollino et al. (eds.), Engineering Geology for Society and Territory 2:1271–1274

  • Massey CI, Petley DN, McSaveney MJ (2013) Patterns of movement in reactivated landslides. Eng Geol 159:1–19

    Article  Google Scholar 

  • MATTM (2010) Piano Straordinario di Telerilevamento Ambientale (PSTA). Linee guida per l’analisi dei dati intereferometrici satellitari in aree soggette a dissesti idrogeologici, Italian Ministry of the Environment and Protection of Land and Sea (MATTM), pp 108

  • Meisina C, Zucca F, Notti D, Colombo A, Cucchi A, Savio G, Giannico C, Bianchi M (2008) Geological interpretation of PSInSAR data at regional scale. Sensors 8:7469–7492

    Article  Google Scholar 

  • Nico G, Borrelli L, Di Pasquale A, Antronico L, Gullà G (2015) Monitoring of an ancient landslide phenomenon by GBSAR technique in the Maierato town (Calabria, Italy). G. Lollino et al. (eds.). Engineering Geology for Society and Territory 2: 129–13

  • Notti D, Davalillo JC, Herrera G, Mora O (2010) Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat Hazards Earth Syst Sci 10:1865–1875

    Article  Google Scholar 

  • Peduto D, Arena L, Calvello M, Anzalone R, Cascini L (2015) Evaluating the state of activity of slow-moving landslides by means of DInSAR data and statistical analyses. In Proc of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development, ISBN 978-0-7277-6067-8, ICE Publishing, doi:10.1680/ecsmge.60678, Vol. 4, pp. 1843–1848

  • Petley DN, Mantovani F, Bulmer MH, Zannoni A (2005) The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphology 66:133–147

    Article  Google Scholar 

  • Pilot G (1984) Instrumentation and warning system for research and complex slope stability problems. Proc. 4th Int. Symp. on Landslides, Toronto, I:275–306

  • Rib HT, Liang T (1978) Recognition and identification. In: Landslide analysis and control, edited by: Schuster, R. L. and Krizek, R. J., National Academy of Sciences, Transportation Research Board Special Report 176, Washington:34–80

  • Risknat Project (2012) Le tecniche radar interferometriche nella pianificazione territoriale, KC Edizioni, Genova, Italy, pp 188, ISBN: 978-88-89007-37-2

  • Sassa K, Picarelli L, Yueping Y (2009) Monitoring, prediction and early warning. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer-Verlag, Berlin Heidelberg, pp 351–375

    Chapter  Google Scholar 

  • Shimizu N, Nakashima S, Masunari T (2014) ISRM suggested method for monitoring rock displacements using the global positioning system (GPS). Rock Mech Rock Eng 47:313–328

    Article  Google Scholar 

  • Simeoni L, Mongiovì L (2007) Inclinometer monitoring of the Castelrotto landslide in Italy. J Geotech Geoenviron Eng 133:653–666

    Article  Google Scholar 

  • Stark TD, Choi H (2008) Slope inclinometers for landslides. Landslides 5:339–350

    Article  Google Scholar 

  • TERRAFIRMA: available at: http://www.terrafirma.eu.com, last access: 9 April 2015

  • Terranova C, Iuliano S, Matano F, Nardò S, Piscitelli E, Cascone E, D’Argenio F, Gelli L, Alfinito M, Luongo G (2009) The TELLUS Project: a satellite-based slow-moving landslides monitoring system in the urban areas of Campania Region, Proceedings of the Conference on Geology and Information Technology, 3–5 June 2008, Offida (AP). Rend Online Soc Geol It 8:148–151

  • Tofani V, Raspini F, Catani F, Casagli N (2013a) Persistent scatterer interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 5:1045–1065

    Article  Google Scholar 

  • Tofani V, Segoni S, Agostini A, Catani F, Casagli N (2013b) Technical note: use of remote sensing for landslide studies in Europe. Nat Hazards Earth Syst Sci 13:299–309

    Article  Google Scholar 

  • Tommasi P, Pellegrini P, Boldini D, Ribacchi R (2006) Influence of rainfall regime on hydraulic conditions and movement rates in the overconsolidated clayey slope of the Orvieto hill (central Italy). Can Geotech J 43:70–86

    Article  Google Scholar 

  • Uzielli M, Catani F, Tofani V, Casagli N (2015) Risk analysis for the Ancona landslide—I: characterization of landslide kinematics. Landslides 12:69–82

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Special report 176: landslides: analysis and control, edited by: Schuster, R. L. and Krizek, R. J., TRB, National Research Council, Washington, DC, pp 11–33

  • Vaunat J, Leroueil S (2002) Analysis of post-failure slope movements within the framework of hazard and risk analysis. Nat Hazards 26:83–109

    Article  Google Scholar 

  • Walstra J, Dixon N, Chandler JH (2007) Historic aerial photographs for landslide assessment: two case histories. Q J Eng Geol Hydrogeol 40:315–332

    Article  Google Scholar 

  • Wang G (2012) Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations. Landslides 9:117–130

    Article  Google Scholar 

  • Wang G, Kearns TJ, Yu J, Saenz G (2014) A stable reference frame for landslide monitoring using GPS in the Puerto Rico and Virgin Island region. Landslides 11:119–129

    Article  Google Scholar 

  • Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138

    Article  Google Scholar 

  • Wei M, Sandwell DT (2010) Decorrelation of L-band and C-band interferometry over vegetated areas in California. IEEE Trans Geosci Remote Sens 48:2942–2952

    Article  Google Scholar 

  • Willenberg H, Loew S, Eberhardt E, Evans KF, Spillmann T, Heincke B, Maurer H, Green AG (2008) Internal structure and deformation of an unstable crystalline rock mass above Randa (Switzerland): part I—internal structure from integrated geological and geophysical investigations. Eng Geol 101:1–14

    Article  Google Scholar 

  • Xiao R, He X (2013) Real-time landslide monitoring of Pubugou hydropower resettlement zone using continuous GPS. Nat Hazards 69:1647–1660

    Article  Google Scholar 

  • Yenes M, Monterrubio S, Nespereira J, Santos G (2009) Geometry and kinematics of a landslide surface in tertiary clays from the Duero Basin (Spain). Eng Geol 104:41–54

    Article  Google Scholar 

  • Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 7:359–365

    Article  Google Scholar 

  • Zanutta A, Baldi P, Bitelli G, Cardinali M, Carrara A (2006) Qualitative and quantitative photogrammetric techniques for multi-temporal landslide analysis. Ann Geophys 49:1067–1080

    Google Scholar 

Download references

Acknowledgments

This work was carried out under the Commessa TA.P05.012 “Tipizzazione di eventi naturali e antropici ad elevato impatto sociale ed economico” of the CNR Department “Scienze del sistema Terra e Tecnologie per l’Ambiente”. Facilities have been implemented within the framework of the activities of the Civil Protection System of the Regione Calabria. The SAR image dataset used in the paper was provided by European Space Agency under the CAT-1 Project “Calibration of the Synthetic Aperture Radar (SAR) measures with Integrated Monitoring Networks (IMoN), and extended uses in homogeneous geological contexts” (C1P.5618). The authors wish to thank Luigi Aceto, Claudio Reali, Salvatore Guardia and Enzo Valente for their technical support to the geotechnical monitoring.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Peduto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gullà, G., Peduto, D., Borrelli, L. et al. Geometric and kinematic characterization of landslides affecting urban areas: the Lungro case study (Calabria, Southern Italy). Landslides 14, 171–188 (2017). https://doi.org/10.1007/s10346-015-0676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0676-0

Keywords

Navigation