Skip to main content

Advertisement

Log in

Landslide impacts in Germany: A historical and socioeconomic perspective

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Landslide impacts on infrastructure and society in the Federal Republic of Germany are associated with damage costs of about US$300 million on annual average. Despite the large overall losses due to widespread landslide activity, there is a lack of historical impact assessments, not just for Germany’s low mountain areas but those of entire Central Europe as well. This paper is a collection of three case studies from Germany that seek a better understanding of landslide impacts and their economic relevance at local and regional level. The first case study investigates damage types and mitigation measures at a representative landslide site in ways that support to gain insight into historical hazard interactions with land use practices. This case history is followed by a case study dealing with fiscal cost impacts of landslide damages for an example city and the highway system of the Lower Saxon Uplands, NW Germany. In addition to a cost-burden analysis for affected public budgets, an overview of the principles of disaster financing in landslide practice is given. The third case study is focused on the conflicts of urban development in hazard areas, with an economic approach to balancing safety and public welfare interests. Each case study is based on historical data sets extracted from Germany’s national landslide database. This paper presents three different case studies that in combination are a first step towards assessing landslide impacts in integrated perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Ackermann E (1953) Der aktive Bergrutsch südlich der Mackenröder Spitze in geologischer Sicht. Nachrichten der Akademie der Wissenschaften in Göttingen, Mathematisch-Physikalische Klasse, IIa. Mathematisch-Physikalisch-Chemische Abteilung 5:67–83

    Google Scholar 

  • Agliardi F, Crosta GB, Frattini P (2009) Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Nat Hazards Earth Syst Sci 9:1059–1073

    Article  Google Scholar 

  • Alexander D (1989) Urban landslides. Prog Phys Geogr 13(2):157–189

    Article  Google Scholar 

  • Alexander D (2005) Vulnerability to landslides. In: Glade T, Anderson MG, Crozier MJ (eds) Landslide hazard and risk. Wiley, Chichester, pp 175–198

    Google Scholar 

  • Ammann WJ (2006) Risk concept, integral risk management and risk governance. In: Ammann WJ, Dannenmann S, Vulliet L (eds) RISK21 – Coping with risks due to natural hazards in the 21st century. Taylor & Francis Group, London, pp 3–23

    Chapter  Google Scholar 

  • Anderson MG, Holcombe E (2013) Community-based landslide risk reduction: Managing disasters in small steps. The World Bank, Washington

    Book  Google Scholar 

  • Angignard M, Garcia C, Peters-Guarin G, Greiving S (2014) The relevance of legal aspects, risk cultures and insurance possibilities for risk management. In: Van Asch T, Corominas J, Greiving S, Malet J-P, Sterlacchini S (eds) Mountain risks: From prediction to management and governance. Springer, Dordrecht, pp 327–340

    Chapter  Google Scholar 

  • Battistini A, Segoni S, Manzo G, Catani F, Casagli N (2013) Web data mining for automatic inventory of geohazards at national scale. Appl Geogr 43:147–158

    Article  Google Scholar 

  • Baum RL, Highland LM, Lyttle PT, Fee JM, Martinez EM, Wald LA (2014) “Report a Landslide” a website to engage the public in identifying geologic hazards. In: Sassa K, Canuti P, Yin Y (eds) Landslide Science for a Safer Geoenvironment, The International Programme on Landslides (IPL), vol 1. Springer, Berlin, pp 95–100

    Chapter  Google Scholar 

  • Bednarczyk Z (2009) Landslide risk and mitigation measures in Poland. In: Tagungsband der 17. Tagung für Ingenieurgeologie und Forum „Junge Ingenieurgeologen“. Hochschule Zittau-Görlitz, 6.-9. Mai 2009, Zittau, pp 1–5

  • Bense FA, Ertl G, Vollbrecht A, Battaglia M (2011) Gravitative Massenverlagerungen an der Röt/Muschelkalk-Schichtstufe des Göttinger Waldes – GPS-gestützte Strukturkartierungen. In: Leiss B, Tanner D, Vollbrecht A, Arp G (eds) Neue Untersuchungen zur Geologie der Leinetalgrabenstruktur: Bausteine zur Erkundung des geothermischen Potentials der Region Göttingen. Universitätsverlag Göttingen, Göttingen, pp 125–131

    Google Scholar 

  • Blöchl A, Braun B (2005) Economic assessment of landslide risks in the Swabian Alb, Germany – Research framework and first results of homeowners’ and experts’ survey. Nat Hazards Earth Syst Sci 5:389–396

    Article  Google Scholar 

  • Bowman ET (2015) Small landslides – Frequent, costly, and manageable. In: Davies T (ed) Landslide hazards, risks, and disasters. Elsevier, Amsterdam, pp 405–439

    Google Scholar 

  • Brabb EE, Harrod BL (eds) (1989) Landslides: Extent and economic significance. A.A. Balkema, Rotterdam

    Google Scholar 

  • Bründl M, Romang HE, Bischof N, Rheinberger CM (2009) The risk concept and its application in natural hazard risk management in Switzerland. Nat Hazards Earth Syst Sci 9:801–813

    Article  Google Scholar 

  • Calcaterra D, Parise M, Palma B (2003) Combining historical and geological data for the assessment of the landslide hazard: A case study from Campania, Italy. Nat Hazards Earth Syst Sci 3:3–16

    Article  Google Scholar 

  • Casale R, Margottini C (eds) (1999) Floods and landslides: Integrated risk assessment. Springer, Berlin

    Google Scholar 

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: Landslides and geographical information systems. Bull Eng Geol Environ 65:341–411

    Article  Google Scholar 

  • Choi KY, Cheung RWM (2013) Landslide disaster prevention and mitigation through works in Hong Kong. J Rock Mech Geotech Eng 5:354–365

    Article  Google Scholar 

  • Cornforth DH (2005) Landslides in practice: Investigations, analysis, and remedial/preventive options in soils. Wiley, Hoboken

    Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263

    Google Scholar 

  • Creasey CL (1988) Landslide damage: A costly outcome of the storm. In: Ellen SD, Wieczorek GF (eds) Landslides, floods, and marine effects of the storm of January 3–5, 1982, in the San Francisco Bay Region, California. U.S. Geological Survey Professional Paper 1434. United States Government Printing Office, Washington D.C., pp 195–203

  • Crovelli RA, Coe JA (2009) Probabilistic estimation of numbers and costs of future landslides in the San Francisco Bay region. Georisk 3:206–223

    Google Scholar 

  • Crozier MJ (2005) Management frameworks for landslide hazard and risk: Issues and options. In: Glade T, Anderson MG, Crozier MJ (eds) Landslide hazard and risk. Wiley, Chichester, pp 331–350

    Google Scholar 

  • Cutter SL, Barnes L, Berry M, Burton C, Evans E, Tate E, Webb J (2008) A place-based model for understanding community resilience to natural disasters. Glob Environ Chang 18:598–606

    Article  Google Scholar 

  • Damm B (2000) Hangrutschungen im Mittelgebirgsraum – Verdrängte „Naturgefahr“? Standort, Zeitschrift für Angewandte Geographie 24:27–34

    Article  Google Scholar 

  • Damm B (2005) Gravitative Massenbewegungen in Südniedersachsen. Die Altmündener Wand – Analyse und Bewertung eines Rutschungsstandortes. Zeitschrift für Geomorphologie NF, Suppl.-Bd. 138:189–209

  • Damm B (2006) Simplified planning regulations in Germany and the effects of landslides. J Environ Plan Manag 49:777–790

    Article  Google Scholar 

  • Damm B, Klose M (2014) Landslide database for the Federal Republic of Germany: A tool for analysis of mass movement processes and impacts. In: Sassa K, Canuti P, Yin Y (eds) Landslide Science for a Safer Geoenvironment, Methods of Landslide Studies, vol 2. Springer, Berlin, pp 787–792

    Chapter  Google Scholar 

  • Damm B, Klose M (2015) The landslide database for Germany: Closing the gap at national level. Geomorphology 249:82–93

    Article  Google Scholar 

  • Damm B, Pflum S (2004) Geomorphologische Naturgefahren und Raumplanung – Bewertungsprobleme am Beispiel von Rutschgefahren in Südniedersachsen. Zeitschrift für Geomorphologie NF, Suppl.-Bd. 135:127–146

  • Damm B, Varga K, Heckmann T, Becht M (2009) The impact of bedrock stratification on landslide susceptibility – An example of GIS-based landslide modelling in the Bunter Sandstone areas of northern Hesse and southern Lower Saxony (Germany). Die Erde 140:175–193

    Google Scholar 

  • Damm B, Becht M, Varga K, Heckmann T (2010) Relevance of tectonic and structural parameters in Triassic bedrock formations to landslide susceptibility in Quaternary hillslope sediments. Quat Int 222:143–153

    Article  Google Scholar 

  • Destatis (2015) Kreisfreie Städte und Landkreise nach Fläche, Bevölkerung und Bevölkerungsdichte am 31.12.2013. https://www.destatis.de/DE/ZahlenFakten/LaenderRegionen/Regionales/Gemeindeverzeichnis/Administrativ/Aktuell/04Kreise.html. Accessed July 6, 2015

  • Devoli G, Morales A, Høeg K (2007) Historical landslides in Nicaragua – Collection and analysis of data. Landslides 4:5–18

    Article  Google Scholar 

  • Dikau R, Glade T (2003) Nationale Gefahrenhinweiskarte gravitativer Massenbewegungen. In: Liedtke H, Mäusbacher R, Schmidt K-H (eds) Nationalatlas Bundesrepublik Deutschland – Relief, Boden und Wasser. Spektrum, Heidelberg, pp 98–99

    Google Scholar 

  • Dikau R, Cavallin A, Jäger S (1996) Databases and GIS for landslide research in Europe. Geomorphology 15:227–239

    Article  Google Scholar 

  • Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M, Agwe J, Buys P, Kjekstad O, Lyon B, Yetman G (2005) Natural disaster hotspots: A global risk analysis. The World Bank, Washington

    Book  Google Scholar 

  • Finlay PJ, Fell R (1997) Landslides: Risk perception and acceptance. Can Geotech J 34:169–188

    Article  Google Scholar 

  • Fleming RW, Taylor FA (1980) Estimating the costs of landslide damage in the United States. Geological Survey Circular 832. U.S. Geological Survey, Arlington

  • Fuchs S (2009) Susceptibility versus resilience to mountain hazards in Austria – Paradigms of vulnerability revisited. Nat Hazards Earth Syst Sci 9:337–352

    Article  Google Scholar 

  • Galli M, Guzzetti F (2007) Landslide vulnerability criteria: A case study from Umbria, central Italy. Environ Manag 40:649–664

    Article  Google Scholar 

  • Gibson AD, Culshaw MG, Dashwood C, Pennington CVL (2013) Landslide management in the UK – The problem of managing hazards in a ‘low-risk’ environment. Landslides 10:599–610

    Article  Google Scholar 

  • Gidde A (2012) Niederschlagsabhängige Böschungsschäden in Niedersachsen. In: Bundesanstalt für Straßenwesen (Hrsg.) 42. Erfahrungsaustausch über Erdarbeiten im Straßenbau. Berichte der Bundesanstalt für Straßenwesen, Heft S 76. Wirtschaftsverlag NW, Bremerhaven, S. 90–92

  • Glade T (2001) Landslide hazard assessment and historical landslide data – An inseparable couple? In: Glade T, Frances F, Albini P (eds) The use of historical data in natural hazard assessments. Springer, Dordrecht, pp 153–168

    Chapter  Google Scholar 

  • Glade T, Crozier MJ (2005) The nature of landslide hazard impact. In: Glade T, Anderson MG, Crozier MJ (eds) Landslide hazard and risk. Wiley, Chichester, pp 43–74

    Chapter  Google Scholar 

  • Godt JW (1999) Maps showing locations of damaging landslides caused by El Niño rainstorms, winter season 1997–98, San Francisco Bay region, California. Pamphlet Field Studies Maps MF-2325-A-J. U.S. Geological Survey, Reston

  • Grunert J, Hess S (2010) The upper middle Rhine valley as a risk area. Nat Hazards 55:577–597

    Article  Google Scholar 

  • Günther A, Carstensen A, Pohl W (2004) Automated sliding susceptibility mapping of rock slopes. Nat Hazards Earth Syst Sci 4:95–102

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T (2012) Landslide inventory maps: New tools for an old problem. Earth Sci Rev 112:42–66

    Article  Google Scholar 

  • Hallegatte S, Przyluski V (2010) The economics of natural disasters: Concepts and methods. Policy Research Working Paper 5507. The World Bank, Washington D.C.

  • Harmsworth G, Raynor B (2005) Cultural consideration in landslide risk perception. In: Glade T, Anderson MG, Crozier MJ (eds) Landslide hazard and risk. Wiley, Chichester, pp 219–249

    Google Scholar 

  • Harp EL, Keefer DK, Sato HP, Yagi H (2011) Landslide inventories: The essential part of seismic landslide hazard analyses. Eng Geol 122(1–2):9–21

    Article  Google Scholar 

  • Hearn GJ, Hunt T, Aubert J, Howell JH (2008) Landslide impacts on the road network of Lao PDR and the feasibility of implementing a slope management programme. International Conference on Management of Landslide Hazard in the Asia-Pacific Region, Sendai, Japan

  • Hervás J (2013) Landslide inventory. In: Bobrowsky PT (ed) Encyclopedia of Natural Hazards. Springer, Berlin, pp 610–611

    Chapter  Google Scholar 

  • Hervás J, Bobrowsky P (2009) Mapping: Inventories, susceptibility, hazard and risk. In: Sassa K, Canuti P (eds) Landslides – Disaster Risk Reduction. Springer, Berlin, pp 321–349

    Chapter  Google Scholar 

  • Highland LM (2006) Estimating landslide losses – Preliminary results of a seven-state pilot project. Open-File Report 2006–1032. U.S. Geological Survey, Reston

  • Holcombe E, Smith S, Wright E, Anderson MG (2012) An integrated approach for evaluating the effectiveness of landslide risk reduction in unplanned communities in the Caribbean. Nat Hazards 61:351–385

    Article  Google Scholar 

  • Howell DG, Brabb EE, Ramsey DW (1999) How useful is landslide hazard information? Lessons learned in the San Francisco Bay region. Int Geol Rev 41:368–381

    Article  Google Scholar 

  • Huang RQ, Chan LS (2004) Human-induced landslides in China: Mechanism study and its implication on slope management. Chin J Rock Mech Eng 23(16):2766–2777

    Google Scholar 

  • Jaeger A-K, Klose M, Damm B (2015) Landslides along highways: GIS-based inventory and planning issues. Geophys Res Abstr 17:EGU2015–1541

    Google Scholar 

  • Kjekstad O, Highland L (2009) Economic and social impacts of landslides. In: Sassa K, Canuti P (eds) Landslides – Disaster Risk Reduction. Springer, Berlin, pp 573–587

    Chapter  Google Scholar 

  • Klawa M, Ulbrich U (2003) A model for the estimation of storm losses and the identification of severe winter storms in Germany. Nat Hazards Earth Syst Sci 3:725–732

    Article  Google Scholar 

  • Klose M (2015) Landslide databases as tools for integrated assessment of landslide risk. Springer Theses – Recognizing Outstanding Ph.D. Research. Springer, Berlin

  • Klose M, Damm B, Gerold G (2012a) Analysis of landslide activity and soil moisture in hillslope sediments using a landslide database and a soil water balance model. GEO-ÖKO 33(3–4):204–231

    Google Scholar 

  • Klose M, Damm B, Terhorst B, Schulz N, Gerold G (2012b) Wirtschaftliche Schäden durch gravitative Massenbewegungen – Entwicklung eines empirischen Berechnungsmodells mit regionaler Anwendung. Interpraevent 12:979–990

    Google Scholar 

  • Klose M, Highland L, Damm B, Terhorst B (2014a) Estimation of direct landslide costs in industrialized countries: Challenges, concepts, and case study. In: Sassa K, Canuti P, Yin Y (eds) Landslide Science for a Safer Geoenvironment, Methods of Landslide Studies, vol 2. Springer, Berlin, pp 661–667

    Chapter  Google Scholar 

  • Klose M, Gruber D, Damm B, Gerold G (2014b) Spatial databases and GIS as tools for regional landslide susceptibility modeling. Zeitschrift für Geomorphologie NF 58(1):1–36

    Article  Google Scholar 

  • Klose M, Damm B, Terhorst B (2015a) Landslide cost modeling for transportation infrastructures: A methodological approach. Landslides 12:321–334

    Article  Google Scholar 

  • Klose M, Damm B, Highland LM (2015b) Databases in geohazard science: An introduction. Geomorphology 249:1–3

  • Krauter E, Kumerics C, Feuerbach J, Lauterbach M (2012) Abschätzung der Risiken von Hang- und Böschungsrutschungen durch die Zunahme von Extremwetterereignissen. Berichte der Bundesanstalt für Straßenwesen, Heft S75. Wirtschaftsverlag NW, Bremerhaven

  • Kron W, Steuer M, Löw P, Wirtz A (2012) How to deal properly with a natural catastrophe database – Analysis of flood losses. Nat Hazards Earth Syst Sci 12:535–550

    Article  Google Scholar 

  • Li T (1989) Landslides: Extent and economic significance in China. In: Brabb EE, Harrod BL (eds) Landslides: Extent and economic significance. A.A. Balkema, Rotterdam, pp 271–287

    Google Scholar 

  • Lin S, Shaw D, Ho MC (2008) Why are flood and landslide victims less willing to take mitigation measures than the public? Nat Hazards 44:305–314

    Article  Google Scholar 

  • Maurischat P, Klose M (2014) Financing and budgetary impact of landslide losses for highways and urban infrastructures in NW Germany – An economic analysis using landslide database information and cost survey data. Geophys Res Abstr 16:EGU2014–1995

    Google Scholar 

  • Mayer J (2012) Naturrisiken und Vorsorge – Eine systemtheoretische Beobachtung von Hangrutschungsrisiken und staatlichen Vorsorgemaßnahmen. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn. http://hss.ulb.uni-bonn.de/2012/3049/3049.pdf. Accessed July 6, 2015

  • Merz B, Emmermann R (2006) Zum Umgang mit Naturgefahren in Deutschland: Vom Reagieren zum Risikomanagement. Gaia 15(4):265–274

    Google Scholar 

  • Meyer S (2005) Der rezente Bergsturz am Messingsberg im niedersächsischen Wesergebirge. Mitteilungen des Verbandes der Deutschen Höhlen- und Karstforscher 51(3):96–100

    Google Scholar 

  • Meyer V, Becker N, Markantonis V, Schwarze R, van den Bergh JCJM, Bouwer LM, Bubeck P, Ciavola P, Genovese E, Green C, Hallegatte S, Kreibich H, Lequeux Q, Logar I, Papyrakis E, Pfurtscheller C, Poussin J, Przyluski V, Thieken AH, Viavattene C (2013) Review article: Assessing the costs of natural hazards – State of the art and knowledge gaps. Nat Hazards Earth Syst Sci 13:1351–1373

    Article  Google Scholar 

  • Michaels S (2005) Addressing landslide hazards: Towards a knowledge management perspective. In: Glade T, Anderson M, Crozier M (eds) Landslide hazard and risk. Wiley, Chichester, pp 311–328

    Google Scholar 

  • Mortensen H (1960) Neues über den Bergrutsch südlich der Mackenröder Spitze und über die holozäne Hangformung an Schichtstufen im mitteleuropäischen Klimabereich. Zeitschrift für Geomorphologie NF, Suppl.-Bd. 1:114–123

  • Munich Re (2014) NatCatSERVICE. http://www.munichre.com/en/reinsurance/business/nonlife/natcat service/index.html. Accessed July 15, 2014

  • Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173

    Article  Google Scholar 

  • Nadim F, Høydal Ø, Haugland H, McLean A (2011) Analysis of landslides triggered by anthropogenic factors in Europe. SafeLand FP7, Deliverable D1.6. http://www.safeland-fp7.eu/results/Documents/D1.6.pdf. Accessed August 13, 2014

  • National Research Council – Committee on the Review of the National Landslide Hazards Mitigation Strategy (2004) Partnerships for reducing landslide risk: Assessment of the National Landslide Hazards Mitigation Strategy. The National Academies Press, Washington D.C.

  • Olshansky RB (1996) Financing landslide hazard mitigation in the United States. J Environ Plan Manag 39(3):371–385

    Article  Google Scholar 

  • Olshansky RB, Rogers JD (1987) Unstable ground: Landslide policy in the United States. Ecology Law Quart 13(4):939–1006

    Google Scholar 

  • Osuchowski M, Roberts J (2011) Landslide costs in the Wollongong Region. Record 2011/32. Geoscience Australia, Canberra

  • Papathoma-Köhle M, Kappes M, Keiler M, Glade T (2011) Physical vulnerability assessment for alpine hazards: State of the art and future needs. Nat Hazards 58:645–680

    Article  Google Scholar 

  • Paus HL (2005) Reply of insurance industry to landslide risk. In: Glade T, Anderson MG, Crozier MJ (eds) Landslide hazard and risk. Wiley, Chichester, pp 251–283

    Google Scholar 

  • Pelling M, Bye L, Zehra Zaidi R, Scolobig A, Sharma U, Mafttei R, Tudor E, Mihai V, Porumbescu C, Angignard M (2011) The cultures of landslide risk management in Europe and India. SafeLand FP7, Deliverable D5.5. http://www.safeland-fp7.eu/results/documents/d5.5.pdf. Accessed August 13, 2014

  • Petley DN (2009) On the impact of urban landslides. In: Culshaw MG, Reeves HJ, Jefferson I, Spink TW (eds) Engineering geology for tomorrow’s cities. Engineering Geology Special Publication No. 22. The Geological Society, London, pp 83–99

  • Petley DN (2012) Global patterns of loss of life from landslides. Geology 40:927–930

    Article  Google Scholar 

  • Popescu ME, Sasahara K (2009) Engineering measures for landslide disaster mitigation. In: Sassa K, Canuti P (eds) Landslides – Disaster Risk Reduction. Springer, Berlin, pp 609–631

    Chapter  Google Scholar 

  • Quinn PE, Hutchinson DJ, Diederichs MS, Rowe RK (2011) Characteristics of large landslides in sensitive clay in relation to susceptibility, hazard, and risk. Can Geotech J 48(8):1212–1232

    Article  Google Scholar 

  • Raška P, Zábranský V, Dubišar J, Kadlec A, Hrbáčová A, Strnad T (2014) Documentary proxies and interdisciplinary research on historic geomorphologic hazards: A discussion of the current state from a central European perspective. Nat Hazards 70:705–732

    Article  Google Scholar 

  • Raška P, Klimes J, Dubisar J (2015) Using local archive sources to reconstruct historical landslide occurrence in selected urban regions of the Czech Republic: Examples from regions with different historical development. Land Degrad Dev 26:142–157

    Article  Google Scholar 

  • Reicherter K, Froitzheim N, Jarsiński M, Badura J, Franzke H-J, Hansen M, Hübscher C, Müller R, Poprawa P, Reinecker J, Stackebrandt W, Voigt T, von Eynatten H, Zuchiewicz W (2008) Alpine tectonics north of the Alps. In: McCann T (ed) The geology of Central Europe, Mesozoic and Cenozoic, vol 2. The Geological Society, London, pp 1233–1285

    Google Scholar 

  • Risley R (1993) Landslide peril and homeowners’ insurance in California. UCLA Law Review 40:1145

    Google Scholar 

  • Rose A (2004a) Economic principles, issues, and research priorities in hazard loss estimation. In: Okuyama Y, Chang SE (eds) Modeling spatial and economic impacts of disasters. Springer, Berlin, pp 13–36

    Chapter  Google Scholar 

  • Rose A (2004b) Defining and measuring economic resilience to disasters. Disaster Prev Manag An Int J 10:270–277

    Google Scholar 

  • Rose J (2008) Kommunale Finanzwirtschaft Niedersachsen: Grundriss für die Aus- und Fortbildung. Kohlhammer, Kiel

    Google Scholar 

  • Rossi M, Witt A, Guzzetti F, Malamud BD, Peruccacci S (2010) Analysis of historical landslide time series in the Emilia-Romagna region, northern Italy. Earth Surf Process Landf 35:1123–1137

    Article  Google Scholar 

  • Schmidt K-H, Beyer I (2002) High-magnitude landslide events on a limestone-scarp in central Germany: Morphometric characteristics and climatic controls. Geomorphology 49:323–342

    Article  Google Scholar 

  • Schönborn C, Heucke K (2012) Bedeutung von Felsen aus der Sicht des Naturschutzes und ihre Berücksichtigung bei Maßnahmen zur Verkehrssicherheit von Straßen. Naturschutz im Land Sachsen-Anhalt 49:40–49

  • Schunke E (1971) Die Massenverlagerungen an den Schichtstufen und Schichtkämmen des Weser-Leine-Berglandes. Nachrichten der Akademie der Wissenschaften in Göttingen, II. Mathematisch-Physikalische Klasse 3:1–35

    Google Scholar 

  • Schuster RL (1996) Socioeconomic significance of landslides. In: Turner AK, Schuster RL (eds) Landslides: Investigation and mitigation. Transportation Research Board, Special Report 247. National Academy Press, Washington D.C., pp 12–35

  • Schuster RL, Highland LM (2001) Socioeconomic and environmental impacts of landslides in the western hemisphere. Open-File Report 01-0276. U.S. Geological Survey, http://pubs.usgs.gov/of/2001/ofr-01-0276/. Accessed July 15, 2014

  • Schuster RL, Highland LM (2007) The third Hans Cloos lecture. Urban landslides: Socioeconomic impact and overview of mitigative strategies. Bull Eng Geol Environ 66:1–27

  • Scolobig A, Linneroth-Bayer J, Pelling M (2014) Drivers of transformative change in the Italian risk policy. Int J Disaster Risk Reduct 9:124–136

    Article  Google Scholar 

  • Shearer CF, Taylor FA, Fleming RW (1983) Distribution and costs of landslides in San Diego county, California, during the rainfall years of 1978–79 and 1979–80. Open-File Report 83-582. U.S. Geological Survey, Reston

  • Simon N, Crozier M, de Roiste M, Rafek AG, Roslee R (2015) Time series assessment on landslide occurrences in an area undergoing development. Singap J Trop Geogr 36:98–111

    Article  Google Scholar 

  • Smith R (1958) Economic and legal aspects. In: Eckel EB (ed) Landslides and engineering practice. Highway Research Board, Special Report 28. National Academy of Sciences, Washington D.C., pp 6–19

  • Solana MC, Kilburn CRJ (2003) Public awareness of landslide hazards: The Barranco de Tirajana, Gran Canaria, Spain. Geomorphology 54:39–48

    Article  Google Scholar 

  • Spizzichino D, Margottini C, Trigila A, Iadanza C, Linser S (2010) Chapter 9: Landslides. In: European Environment Agency (ed) Mapping the impacts of natural hazards and technological accidents in Europe: An overview of the last decade. EEA Technical report 13/2010. European Environmental Agency, Copenhagen, pp 81–93

  • Spizzichino D, Margottini C, Trigila A, Iadanza C (2013) Landslide impacts in Europe: Weaknesses and strengths of databases available at European and national scale. In: Margottini C, Canuti P, Sassa K (eds) Landslide Science and Practice, Landslide Inventory and Susceptibility and Hazard Zoning, vol 1. Springer, Berlin, pp 73–80

    Google Scholar 

  • Taylor FA, Brabb EE (1972) Maps showing distribution and cost by counties of structurally damaging landslides in the San Francisco Bay region, California, winter of 1968–69. USGS Miscellaneous Field Studies Map: 327

  • Taylor FE, Malamud BD, Freeborough K, Demeritt D (2015) Enriching Great Britain's National Landslide Database by searching newspaper archives. Geomorphology 249:52–68

    Article  Google Scholar 

  • Terhorst B, Kreja R (2009) Slope stability modelling with SINMAP in a settlement area of the Swabian Alb. Landslides 6:309–319

    Article  Google Scholar 

  • THW (1957, Autor unbekannt) Dammbruch mit schweren Folgen. Das Technische Hilfswerk 4(12):7–8

    Google Scholar 

  • Tilch N (1999) Rutschungs-Suszeptibilität im südlichen Niedersachsen – Von der Anatomie der Rutschung bei Brunkensen/Alfeld zur Prognose instabiler Hanglagen. Braunschweiger Geowissenschaftliche Arbeiten 22, 184 S.

  • United Nations (2014) Population and vital statistics report. Statistical Papers, Series A Vol. LXVI. UN Department of Economic and Social Affairs, New York

  • Van Den Eeckhaut M, Hervás J (2012) State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 139–140:545–558

    Article  Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Vandekerckhove L, Van Gils M, Van Rompaey A (2010) Human-environment interactions in residential areas susceptible to landsliding: The Flemish Ardennes case study. Area 42(3):339–358

    Article  Google Scholar 

  • Van Westen CJ (2013) Remote sensing and GIS for natural hazards assessment and disaster risk management. In: Bishop MP (ed) Treatise on Geomorphology, Remote Sensing and GIScience in Geomorphology, vol 3. Academic Press, San Diego, pp 259–298

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation – Why is it still so difficult? Bull Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • Varga K, Becht M, Damm B (2006) Ansätze der GIS-gestützten räumlichen Modellierung von Rutschgefahren in Buntsandsteingebieten Nordhessens und Südniedersachsens (BRD). Angewandte Geoinformatik 2006:679–684

    Google Scholar 

  • Varnes DJ, IAEG (1984) Landslide hazard zonation: A review of principles and practice. UNESCO, Paris

    Google Scholar 

  • Vranken L, Van Turnhout P, Van Den Eeckhaut M, Vandekerckhove L, Poesen J (2013) Economic valuation of landslide damage in hilly regions: A case study from Flanders, Belgium. Sci Total Environ 447:323–336

  • Walkinshaw J (1992) Landslide correction costs on US state highway systems. Transp Res Rec 1343:36–41

    Google Scholar 

  • Wasowski J (1998) Understanding rainfall-landslide relationships in man-modified environments: A case-history from Caramanico Terme, Italy. Environ Geol 35:197–209

    Article  Google Scholar 

  • Wills C, Perez F, Branum D (2014) New method for estimating landslide losses from major winter storms in California and application to the ARkStorm scenario. Nat Hazard Rev. doi:10.1061/(ASCE)NH.1527-6996.0000142

    Google Scholar 

  • Winter MG, Bromhead EN (2012) Landslide risk: Some issues that determine societal acceptance. Nat Hazards 62:169–187

    Article  Google Scholar 

  • Winter MG, Palmer D, Sharpe J, Shearer B, Harmer C, Peeling D, Bradbury T (2014) Economic impact assessment of landslide events. In: Sassa K, Canuti P, Yin Y (eds) Landslide Science for a Safer Geoenvironment, The International Programme on Landslides (IPL), vol 1. Springer, Berlin, pp 217–222

    Chapter  Google Scholar 

  • Yin KL, Yan TZ (1988) Statistical prediction models for slope instability of metamorphosed rocks. In: Bonnard C (ed) Proceedings of the 5th International Symposium on Landslides, Vol. 2, Balkema, Rotterdam, pp 1269–1272

  • Zêzere JL, Oliveira SC, Garcia RAC, Reis E (2007) Landslide risk analysis in the area north of Lisbon (Portugal): Evaluation of direct and indirect costs resulting from a motorway disruption by slope movements. Landslides 4:123–136

    Article  Google Scholar 

Download references

Acknowledgments

This research project was funded by the German Research Foundation (DFG DA 452/6-1). The funding of the project is gratefully acknowledged. Financial support was also given by the Ministry of Science and Culture of Lower Saxony (MWK Niedersachsen 11.2-76202-10-1/07) and the German Academic Exchange Service (DAAD D/12/45096). The authors very much appreciate the funding received from these institutions. Thanks are also due to the Lower Saxony Department of Transportation (NLStBV) and the municipal office of Hann. Münden for the fruitful collaboration over the past years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Klose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klose, M., Maurischat, P. & Damm, B. Landslide impacts in Germany: A historical and socioeconomic perspective. Landslides 13, 183–199 (2016). https://doi.org/10.1007/s10346-015-0643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0643-9

Keywords

Navigation