Skip to main content

Advertisement

Log in

Reconstruction of the history of the Palliser Rockslide based on 36Cl terrestrial cosmogenic nuclide dating and debris volume estimations

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This paper presents the results of a combined study, using cosmogenic 36Cl exposure dating and terrestrial digital photogrammetry of the Palliser Rockslide located in the southeastern Canadian Rocky Mountains. This site is particularly well-suited to demonstrate how this multi-disciplinary approach can be used to differentiate distinct rocksliding events, estimate their volume, and establish their chronology and recurrence interval. Observations suggest that rocksliding has been ongoing since the late Pleistocene deglaciation. Two major rockslide events have been dated at 10.0 ± 1.2 kyr and 7.7 ± 0.8 kyr before present, with failure volumes of 40 and 8 Mm3, respectively. The results have important implications concerning our understanding of the temporal distribution of paraglacial rockslides and rock avalanches; they provide a better understanding of the volumes and failure mechanisms of recurrent failure events; and they represent the first absolute ages of a prehistoric high-magnitude event in the Canadian Rocky Mountains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam Technology (2007) 3DM CalibCam and 3DM Analyst, version 2.2b Http://www.adamtech.com.au

  • Antinao JL, Gosse J (2009) Large rockslides in the southern central Andes of Chile (32–34.5°S): tectonic control and significance for quaternary landscape evolution. Geomorphol 104:117–133

    Article  Google Scholar 

  • Ballantyne CK, Stone JO (2003) The Beinn Alligin rock avalanche, NW, Scotland: cosmogenic 10Be dating, interpretation and significance. The Holocene 14(3):448–453

    Article  Google Scholar 

  • Ballantyne CK, Stone JO, Fifield LK (1998) Cosmogenic Cl-36 dating of postglacial landsliding at the Storr, Isle of Skye, Scotland. The Holocene 8:247–351

    Article  Google Scholar 

  • Blais-Stevens A, Hermanns R, Jermyn C (2011) A 36Cl age determination for Mystery Creek rock avalanche and its implications in the context of hazard assessment, British Columbia, Canada. Landslides 8(4):407–416

    Article  Google Scholar 

  • Cruden DM (1976) Major rockslides in the Rockies. Can Geotech J 13:8–20

    Article  Google Scholar 

  • Cruden DM (1985) Rock slope movements in the Canadian Cordillera. Can Geotech J 22:528–540

    Article  Google Scholar 

  • Cruden DM, Eaton TM (1987) Reconnaissance of rockslide hazards in Kananaskis Country, Alberta. Can Geotech J 24:414–429

    Article  Google Scholar 

  • Cruden DM, Hu XQ (1993) Exhaustion and steady state models for predicting landslide hazards in the Canadian Rocky Mountains. Geomorphology 8:279–285

    Article  Google Scholar 

  • Dortch JM, Owen LA, Haneberg WC, Caffee MW, Cietsch C, Kamp U (2009) Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat Sci Rev 28:1037–1054

    Article  Google Scholar 

  • El Bedoui S, Guglielmi Y, Lebourg T, Pérez J-L (2009) Deep-seated failure propagation in a fractured rock slope over 10,000 years: The La Clapière slope, the south-eastern French Alps. Geomorphol 105:232–238

    Article  Google Scholar 

  • Environment Canada (2010) http://www.climate.weatheroffice.gc.ca/advanceSearch/searchHistoricDataStations_e.html?searchType=stnName&timeframe=1&txtStationName=pocaterra&searchMethod=contains&optLimit=yearRange&StartYear=1840&EndYear=2010&Month=8&Day=11&Year=2010&selRowPerPage=25&cmdStnSubmit=Search

  • Gardner JS (1980) Frequency, magnitude and spatial distribution of mountain rockfalls and rockslides in the Highwood Pass area, Alberta, Canada. In: Coates DR, Vitek JD (eds) Thresholds in geomorphology. Allen and Unwin, London, pp 267–295

    Google Scholar 

  • Gardner JS (1982) Alpine mass-wasting in contemporary time: some examples from the Canadian rocky mountains. In: Thorn CE (ed) Space and time in geomorphology. Allen and Unwin, London, pp 171–192

    Google Scholar 

  • Genevois R, Ghirotti M (2005) The 1963 Vaiont landslide. J Appl Geol 1:41–52

    Google Scholar 

  • Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560

    Article  Google Scholar 

  • Hajdas I, Ivy-Ochs S, Pickering R, Preusser F (2008) Recent developments in Quaternary dating methods. Geogr Helv 63:176–180

    Article  Google Scholar 

  • Heim A (1932) Bergsturz and Menschenleben. Fretz & Wasmuth, Zürich

    Google Scholar 

  • Hermanns RL, Niedermann S, Ivy-Ochs S, Kubik PW (2004) Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW, Argentina)—evidence from surface exposure dating and stratigraphic analyses. Landslides 1(2):113–122

    Article  Google Scholar 

  • Hermanns RL, Redfield TF, Bunkholt HSS, Fischer L, Oppikofer T, Gosse J, Eiken T (2012) Cosmogenic nuclide dating of slow moving rockslides in Norway in order to assess long-term slide velocities. In: Eberhardt E et al (eds) Landslides and engineered slopes: protecting society through improved understanding. Taylor & Francis Group, London, pp 849–854

    Google Scholar 

  • Hewitt K, Gosse J, Clague J (2011) Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya. GSA Bull 123:1836–1850

    Article  Google Scholar 

  • Hippolyte J-C, Bourlès D, Braucher R, Carcaillet J, Léanni L, Arnold M, Aumaire G (2009) Cosmogenic 10Be dating of a sackung and its faulted rock glaciers, in the Alps of Savoy (France). Geomorphol 108:312–320

    Article  Google Scholar 

  • InnovMetric Software Inc. (2006) Polyworks Package: IMInspect, version 9.1.8. http://www.innovmetric.com/Manufacturing/home.aspx2006

  • Ivy-Ochs S, Heuberger H, Kubik PW, Kerschner H, Bonani G, Frank M, Schlüchter C (1998) The age of the Köfels event. Relative 14C and cosmogenic isotope dating of an early Holocene landslide in the Central Alps (Tyrol, Austria). Z Gletch Glazialgeol 34(1):57–68

    Google Scholar 

  • Ivy-Ochs S, Poschinger A, Synal H-A, Maisch M (2009) Surface exposure dating of the Flims landslide, Graubünden, Switzerland. Geomorphol 103:104–112

    Article  Google Scholar 

  • Jaboyedoff M, Baillifard F, Couture R, Locat J, Locat P (2004) Toward preliminary hazard assessment using DEM topographic analysis and simple mechanical modeling by means of sloping local base level. In: Lacerda WA, Ehrlich M, Fontoura AB, Sayão A (eds) Landslides: evaluation and stabilization. Taylor & Francis Group, London, pp 199–205

    Google Scholar 

  • Jackson LE (1979) Glacial history and stratigraphy of the Alberta portion of the Kananaskis Lakes map area. Can J Earth Sci 17:459–477

    Article  Google Scholar 

  • Jarman D, Agliardi F, Crosta G (2011) Megafans and outsize fans from catastrophic slope failures in Alpine glacial troughs: the Malser Haide and the Val Venosta cluster, Italy. In: Jaboyedoff M (Ed) Slope tectonics. Geol Soc London, Special Publications 351, pp 253–277

  • Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3:247–251

    Article  Google Scholar 

  • Mathews WH, McTaggart KC (1978) Hope rockslides, British Columbia, Canada. In: Voight B (Ed). Rockslides and Avalanches Elsevier, pp 259–275

  • McCarthy DP, Smith DJ (1994) Historical glacier activity in the vicinity of Peter Lougheed Provincial Park, Canadian Rocky Mountains. West Geogr 4:94–109

    Google Scholar 

  • McColl ST (2012) Paraglacial rock slope stability. Geomorphology 153–154:1–16

    Article  Google Scholar 

  • McMechan ME (1998) Geology and structure cross section. Peter Lougheed Provincial Park, Alberta Geological Survey of Canada, Map 1920A, scale 1:50000

  • Menounos B, Osborn G, Clague J, Luckman B (2009) Latest Pleistocene and Holocene glacier fluctuations in western Canada. Quat Sci Rev 28:2049–2074

    Article  Google Scholar 

  • Oppikofer T (2009) Detection, analysis and monitoring of slope movements by high-resolution digital elevation models. Thèse de doctorat, Faculté des Géosciences et de l’Environnement Université de Lausanne, Switzerland, 201 pp

    Google Scholar 

  • Oppikofer T, Hermanns RL, Redfield TF, Sepûlveda SA, Duhart P, Bascuñan I (2012) Morphologic description of the Punta Cola rock avalanche and associated minor rockslides caused by the 21 April 2007 Aysén earthquake (Patagonia, southern Chile). Rev Asoc Geol Argent

  • Osborn G, Gerloff L (1997) Latest Pleistocene and early Holocene fluctuations of glaciers in the Canadian and northern American Rockies. Quat Int 38(39):7–19

    Article  Google Scholar 

  • Pedrazzini A, Froese CR, Jaboyedoff M, Hungr O, Humair F (2012) Combining digital elevation model analysis and run-out modeling to characterize hazard posed by a potentially unstable rock slope at Turtle Mountain, Alberta, Canada. Eng Geol 128:76–94

    Article  Google Scholar 

  • Plug LJ, Gosse JC, McIntosh JJ, Bigley R (2007) Attenuation of cosmic ray flux in temperate forest. J Geophys Res 112:F02022. doi:10.1029/2006JF000668

    Google Scholar 

  • Prager C, Ivy-Ochs S, Ostermann M, Synal H-A, Patzelt G (2009) Geology and radiometric 14C-, 36Cl- and Th-/U-dating of the Fernpass rockslide (Tyrol, Austria). Geomorphol 103:93–103

    Article  Google Scholar 

  • Sartori M, Baillifard F, Jaboyedoff M, Rouiller J-D (2003) Kinematics of the 1991 Randa rockslides (Valais, Switzerland). Nat Hazards Earth Syst Sci 3:423–433

    Article  Google Scholar 

  • Schimmelpfennig I, Benedetti L, Finkel R, Pik R, Blard P-H, Bourlès D, Burnard P, Williams A (2009) Source of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates. Quat Geochron 4:441–461

    Article  Google Scholar 

  • Smith DJ, McCarthy DP, Colenutt ME (1995) Little Ice Age glacial activity in Peter Lougheed and Elk Lakes Provincial Park, Canadian Rocky Mountains. Can J Earth Sci 32:579–589

    Article  Google Scholar 

  • Staiger J, Gosse J, Toracinta R, Oglesby B, Fastook J, Johnson JV (2007) Atmospheric scaling of cosmogenic nuclide production: climate effect. J Geophys Res Solid Earth 112(B2):1978–2012

    Article  Google Scholar 

  • Stone JO (2001) Unpublished University of Washington Cosmogenic Nuclide Laboratory method available for download at http://depts.washington.edu/cosmolab/chem.html

  • Sturzenegger M, Stead D (2009) Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat Hazards Earth Syst Sci 9:267–287

    Article  Google Scholar 

  • Sturzenegger M, Stead D (2012) The Palliser Rockslide, Canadian Rocky Mountains: characterization and modeling of a stepped failure surface. Geomorphol 138:145–161

    Article  Google Scholar 

  • Van Husen D, Ivy-Ochs S, Alfimow V (2007) Mechanism and age of late glacial landslides in Calcareous Alps; the Almtal Upper Austria. Austrian J Earth Sci 100:114–126

    Google Scholar 

  • Vermeesch P (2007) CosmoCalc: an Excel add-in for cosmogenic nuclide calculations. Geochem Geophys Geosystems 8(8), Q08003

    Article  Google Scholar 

  • Welkner D, Eberhardt E, Hermanns RL (2010) Hazard investigation of the Portillo Rock Avalanche site, Central Andes, Chile, using an integrated field mapping and numerical modelling approach. Eng Geol 114:278–297

    Article  Google Scholar 

  • Wolter A, Stead D, Clague J (2013) A morphologic characterization of the 1963 Vajont Slide, Italy, using long-range terrestrial photogrammetry. Geomorphol 206:147–164

    Article  Google Scholar 

  • Zdanowicz CM, Zielinski GA, Germani MS (1999) Mount Mazama eruption: calendrical age verified and atmospheric impact assessed. Geology 27(7):621–624

    Article  Google Scholar 

Download references

Acknowledgments

Funding for the research was provided by the Alberta Geological Survey. The authors thank Véronique Duc, Sylvian Braibant, Roger Studerus, and Song Yan-Hui for their assistance in the field; Guang Yang at DGC and Marc Caffee at PRIME Lab for target preparation and AMS analysis; and two anonymous reviewers for their excellent comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Sturzenegger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sturzenegger, M., Stead, D., Gosse, J. et al. Reconstruction of the history of the Palliser Rockslide based on 36Cl terrestrial cosmogenic nuclide dating and debris volume estimations. Landslides 12, 1097–1106 (2015). https://doi.org/10.1007/s10346-014-0527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-014-0527-4

Keywords

Navigation