Skip to main content
Log in

Moringa Oleifera—Establishment and Multiplication of Different Ecotypes In Vitro

Moringa oleifera – Etablierung und Vermehrung verschiedener Ökotypen in vitro

  • Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

To obtain healthy plant material from Moringa oleifera regardless of season, weather, and degree of infestation, a procedure to establish an in vitro culture of M. oleifera from nodes using 0.2 % mercury chloride was developed. It was not possible to create an in vitro culture of M. oleifera from seeds. Nodes were cultivated on MS medium with different concentrations of benzylaminopurine (BAP) and agar contents to find the best conditions for rapid growth and optimum multiplication. The highest multiplication ability of the different plant parts, especially the base parts of M. oleifera in vitro plants, was observed after 3 weeks of cultivation on MS medium with 0.5 mg l−1 BAP. Callus formation increases with increased BAP concentration (0, 0.5, 0.75, 1 mg l−1 BAP). Furthermore, the use of two phytohormones, indole-3-acetic acid and thidiazuron—led to very strong callus formation of adaxial and abaxial orientated leaves on MS medium. This formation was only observed for material that was light induced for 24 h prior to cultivation under dark conditions. Analysis of the glucosinolate content of M. oleifera leaves revealed a different glucosinolate profile of plants cultivated in vitro and in soil beds in the greenhouse. Whereas in greenhouse leaves rhamnopyranosyloxy-benzyl glucosinolates were abundant, the precursor benzyl glucosinolate was found in in vitro cultures.

Zusammenfassung

Um unabhängig von der Jahreszeit, dem Wetter und Schaderregerbefall gesundes Pflanzenmaterial von Moringa oleifera zur Verfügung zu haben, wurde eine Methode zur Etablierung einer in vitro-Kultur von M. oleifera aus Nodien unter Verwendung von 0,2 % Quecksilberchlorid entwickelt. Nodien wurden in MS-Medium mit unterschiedlichen Konzentrationen von Benzylaminopurin (BAP) und unterschiedlichen Agar-Gehalten kultiviert, um bestmögliche Bedingungen für ein schnelles Wachstum und eine optimale Vermehrung zu ermitteln. Die höchste Vermehrungsfähigkeit der unterschiedlichen Pflanzenabschnitte, besonders der Basisbereiche der in vitro-Pflanze, wurde nach dreiwöchiger Kultivierung auf MS-Medium mit 0,5 mg l−1 BAP festgestellt. Die Bildung von Kallus nahm mit einer erhöhten BAP-Konzentration zu (0, 0,5, 0,75, 1 mg l−1 BAP). Weiterhin führte die Verwendung der Phytohormone 3-Indolessigsäure und Thidiazuron zu einer starken Kallusbildung von auf dem MS-Medium adaxial und abaxial orientierten aufgelegten Blättern. Die Kallusentstehung wurde nur bei Material, welches für 24 h vor der Dunkelkultivierung lichtinduziert wurde, beobachtet. Analysen des Glucosinolatgehaltes von M. oleifera-Blättern zeigten, dass die in vitro-Pflanzen im Vergleich zu den Pflanzen, welche in mit Erde gefüllten Gewächshausbeeten wuchsen, ein unterschiedliches Glucosinolatprofil aufwiesen. Während in den Gewächshausblättern Rhamnopyranosyl-Benzylglucosinolate detektiert wurden, konnte im in vitro-Material hauptsächlich der Präkursor, das Benzylglucosinolat, bestimmt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad G, Jan A, Arif M, Jan MT, Khattak RA (2007) Influence of nitrogen and sulfur fertilization on quality of canola (Brassica napus L.) under rainfed conditions. J Zhejiang Univ Sci B 8:731–737

    Article  PubMed  CAS  Google Scholar 

  • Anwar F, Latif S, Ashraf M, Gilani AH (2007) Review article. Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res 21:17–25

    Article  PubMed  CAS  Google Scholar 

  • Ballester A, Bourrain L, Corredoira E, Goncalves JC, Lè CL, Miranda-Fontaiña ME, San-José M del C, Sauer U, Vieitez AM, Wilhelm E (2001) Improving chestnut micropropagation through axillary shoot development and somatic embryogenesis. For Snow Landsc Res 76:460–467. www.wsl.ch/publikationen/pdf/4880.pdf. Accessed 1 Sept 2012

    Google Scholar 

  • Bennett RN, Mellon FA, Foidl N, Pratt JH, Dupont MS, Perkins L, Kroon PA (2003) Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish Tree) and Moringa stenopetala. L J Agric Food Chem 51:3546–3553

    Article  CAS  Google Scholar 

  • Cáceres A, Saravia A, Rizzo S, Zabala L, De Leon E, Nave F (1992) Pharmacologic properties of Moringa oleifera. 2: screening for antispasmodic, anti-inflammatory and diuretic activity. J Ethnopharmacol 36:233–237

    Article  PubMed  Google Scholar 

  • Decendit A, Mérillon JM (1996) Condensed tannin and anthocyanin production in Vitis vinifera cell suspension cultures. Plant Cell Rep 15:762–765

    Article  CAS  Google Scholar 

  • DIN EN ISO 9167-1: 1995/prA1:2012, German version of the ISO 9167-1:1992/DAM 1:2012, Joint committee of DIN and DGF for the analysis of fats, oils and products thereof, related and primary products. (2012) Rapeseed - Determination of glucosinolate content––Part 1: method using high-performance liquid chromatography

  • Doughty KJ, Kiddle GA, Pye BJ, Wallsgrove RM, Pickett JA (1995) Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry 38:347–350

    Article  CAS  Google Scholar 

  • Eilert U, Wolters B, Nahrstedt A (1981) The antibiotic principle of seeds of Moringa leifera and Moringa stenopetala. Planta Med 42:55–61

    Article  PubMed  CAS  Google Scholar 

  • Fahey JW (2005) Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees Life J 1. http://www.TFLJournal.org/article.php/20051201124931586. Accessed 1 Nov 2012

  • Faisal M, Singh S, Anis M (2005) In vitro regeneration and plant establishment of Tylophora indica (Burm. F.) Merrill: petiole callus culture. In Vitro Cell Dev Biol-Plant 41:511–515

    Article  Google Scholar 

  • Faizi S, Siddiqui BS, Saleem R, Siddiqui S, Aftab K (1994) Isolation and structure elucidation of new nitrile and mustard oil glycosides from Moringa oleifera and their effect on blood pressure. J Nat Prod 57:1256–1261

    Article  PubMed  CAS  Google Scholar 

  • Förster N, Mewis I, Ulrichs C (2011) Einfluss des Anbaus auf die Wachstumseigenschaften und den Glucosinolatgehalt von Moringa oleifera. DGG-Proceedings 1(14):1–5

    Google Scholar 

  • Frankel EN, Kanner J, German JB, Parks E, Kinsella JE (1993) Inhibition of oxidation of human low-density lipoproteins by phenolic substances in red wine. Lancet 341:454–456

    Article  PubMed  CAS  Google Scholar 

  • Gilani AH, Aftab K, Suria A (1994) Pharmacological studies on hypotensive and spasmolytic activities of pure compounds from Moringa oleifera. Phytother Res 8:87–91

    Article  CAS  Google Scholar 

  • Gitonga LN, Cichuki ST, Namau K, Muigai AWT, Kahangi EM, Wasilwa LA, Wepukhulu S, Njogu N (2010) Effect of explants type, source and genotype on in vitro shoot regeneration in Macadamia. J Agric Biotech Sustainable Dev 2:129–135

    Google Scholar 

  • Guevara AP, Vargas C, Sakurai H, Fujiwara Y, Hahimoto K, Maoka T, Kozuka M, Ito Y, Tokuda H, Nishino H (1999) An antitumor promoter from Moringa oleifera Lam. Mutat Res 440:181–188

    Article  PubMed  CAS  Google Scholar 

  • Liu RJ, Cantliffe DJ (1984) Somatic embryogenesis and plant regeneration in tissue cultures of sweet potato (Ipomea batatas Poir.). Plant Cell Rep 3:112–115

    Article  Google Scholar 

  • Makonnen E, Hunde A, Damecha G (1997) Hypoglycaemic effect of Moringa stenopetala aqueous extract in rabbits. Phytother Res 11:147–148

    Article  Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138:1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Meyer HJ, Van Staden J (1995) The in vitro production of an anthocyanin from callus cultures of Oxalis lineraris. Plant Cell Tiss Org 40:55–58

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nadkarni KM (1976) Nadkarni’s Indian Materia Medica. Popular Prakashan, Bombay

    Google Scholar 

  • Nikkon F, Saud ZA, Rahman MH, Haque MdE (2003) In vitro antimicrobial activity of the compound isolated from chloroform extract of Moringa oleifera Lam. Pak J Biol Sci 6:1888–1890

    Article  Google Scholar 

  • Olson ME (2002) Combining data from DNA sequences and morphology for a phylogeny of Moringaceae (Brassicales). Sys Bot 27:55–73

    Google Scholar 

  • Omidi M, Shahpiri A (2003) Callus induction and plant regeneration in vitro in potato. Acta Hort (ISHS) 619:315–322

    CAS  Google Scholar 

  • Pilgrim H (1977) Sapogeninbildung in Suspensionskulturen von Digitales purpurea. Phytochemistry 16:1311–1312

    Article  CAS  Google Scholar 

  • Ramachandran C, Peter KV, Gopalakrishnan PK (1980) Drumstick (Moringa oleifera): a multipurpose Indian vegetable. Econ Bot 34:276–283

    Article  CAS  Google Scholar 

  • Sampson W (2005) Studying Herbal Remedies. New Engl J Med 353:337–339

    Article  PubMed  CAS  Google Scholar 

  • Siddhuraju P, Becker K (2003) Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J Agri Food Chem 51:2144–2155

    Article  CAS  Google Scholar 

  • Slater A, Scott N, Fowler M (2003) Plant Biotechnology. The genetic manipulation of plants. Oxford University press, Oxford

    Google Scholar 

  • Smith RH, Price HJ, Thaxton JB (1977) Defined conditions for the initiation and growth of cotton callus in vitro I. Gossypium arboretum. In Vitro 13:329–334

    Article  PubMed  CAS  Google Scholar 

  • Steinitz B, Tabib Y, Gaba V, Gefen T, Vaknin Y (2009) Vegetative micro-cloning to sustain biodiversity of threatened Moringa species. In Vitro Cell Dev-Pl 45:65–71

    Article  Google Scholar 

  • Stephenson KK, Fahey JW (2004) Development of tissue culture methods for the rescue and propagation of endangered Moringa spp. germplasm. Econ Bot 58(Supplement):116–124

    Article  Google Scholar 

  • Sultana B, Anwar F (2008) Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem 108:879–884

    Article  CAS  Google Scholar 

  • Talalay P, Talalay P (2001) The importance of using scientific principles in the development of medicinal agents from plants. Acad Med 76:238–247

    Article  PubMed  CAS  Google Scholar 

  • Verma R, Singh RR (2007) Regeneration and in vitro flowering in Brassica campestris (L.) var. Bhavani. Our Nature 5:21–24

    Google Scholar 

  • Wielanek M, Urbanek H (1999) Glucotropeaolin and myrosinase production in hairy root cultures of Tropaeolum majus. Plant Cell Tiss Org 57:39–45

    Article  CAS  Google Scholar 

  • Yang R-Y, Chang L-C, Hsu J-C, Weng BBC, Palada MC, Chadha ML, Levasseur V (2006) Nutritional and functional properties of Moringa leaves—from germplasm, to plant, to food, to health. In: Moringa and other highly nutritious plant resources: strategies, standards and markets for a better impact on nutrition in Africa, Accra, Ghana: 1–9. http://www.moringanews.org/doc/GB/Papers/Ray_Yu_Text_GB.pdf. Accessed 1 Nov 2012

Download references

Acknowledgments

I would like to thank the Asian Vegetable Research and Development Center (AVRDC) for providing us with seed material from different Moringa oleifera ecotypes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadja Förster MSc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förster, N., Mewis, I. & Ulrichs, C. Moringa Oleifera—Establishment and Multiplication of Different Ecotypes In Vitro . Gesunde Pflanzen 65, 21–31 (2013). https://doi.org/10.1007/s10343-013-0291-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-013-0291-8

Keywords

Schlüsselwörter

Navigation